

InVision[™] His-tag In-gel Stain

For specific, sensitive staining of His-tagged fusion proteins

Catalog numbers LC6030, LC6033

Revision Date 19 March 2012 Publication part number 25-0671

MAN0000397

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

Contents

InVision™ His-tag In-gel Stain Experienced Users Guide	v
Contents and Storage	vi
Introduction	1
Product Description	1
Experimental Overview	3
Methods	4
Using InVision [™] His-tag In-gel Stain	4
Visualizing and Imaging the Gel	11
Downstream Applications	13
Expected Results	15
Troubleshooting	16
Appendix	18
Accessory Products	
Technical Support	19
Purchaser Notification	21

InVision[™] His-tag In-gel Stain Experienced Users Guide

Introduction	This quick reference sheet is included for experienced users
	of InVision [™] His-tag In-gel Stain. If you are a first time user,
	follow the detailed protocol included in this manual.

Step	Action		
Perform Electrophoresis	Perform electrophoresis of His-tagged fusion proteins on a suitable gel. Proceed to staining.		
Staining Procedure	Perform all incubations at room temperature and on an orbital shaker set at 1 revolution per second. See page 4 for specific protocol based on the gel type.		
	1. After electrophoresis, fix the gel for 1 hour in the appropriate Fixing Solution (page 6) based on the gel type. Decant the fixative.		
	2. Wash the gel twice for 10 minutes each with ultrapure water to remove the fixative.		
	 Stain the gel with the ready-to-use solution of InVision[™] His-tag In-gel Stain for 1 hour at room temperature. Decant the stain. 		
	4. Wash the gel twice for 10 minutes each with 20 mM phosphate buffer, pH 7.8. Proceed to visualizing the gel immediately.		
Visualize the Gel	Place the gel on a UV transilluminator equipped with a camera (capable of integration) or use a laser-based scanner to capture an image of the gel. The maximum excitation wavelength for InVision [™] His-tag In-gel Stain is at 560 nm and maximum emission wavelength is at 590 nm.		
	InVision [™] His-tag In-gel Staining will result in fluorescent His-tagged fusion protein bands.		

Contents and Storage

Products This manual is supplied with the following products:

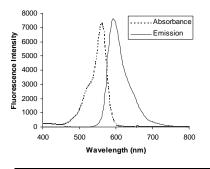
Product	Quantity	Catalog no.
InVision [™] His-tag In-gel Stain	500 mL	LC6030
InVision™ His-tag In-gel Staining Kit	500 mL InVision™ His-tag In-gel Stain	LC6033
	125 μL BenchMark™ His-tagged Protein Standard	

Contents and Storage	InVision [™] His-tag In-gel Stain is shipped at room temperature in an amber bottle. Sufficient stain is supplied for staining 20 mini-gels.
	Upon receipt, store InVision [™] His-tag In-gel Stain at room temperature, 15°C to 30°C. The stain is stable for 6 months when stored at room temperature.
	Note: The stain is pink in color.
	Store the BenchMark TM His-tagged Protein Standard (included with Cat. no. LC6033) at -30° C to -10° C upon receipt. The standard is stable for 6 months when stored at -20° C.
Product use	For research use only. Not intended for any animal or human therapeutic or diagnostic use.

Introduction

Product Description

Description


InVision[™] His-tag In-gel Stain is a ready-to-use, proprietary fluorescent stain that is specially formulated for fast, sensitive, and specific detection of His-tagged fusion proteins.

The staining of a mini-gel is complete in less than 3 hours and is capable of detecting ~0.5 picomole of a 6X His-tagged fusion protein (e.g. 1 picomole of a 30 kDa protein is 30 ng).

InVision[™] His-tag In-gel Stain

The InVision[™] His-tag In-gel Stain consists of a proprietary fluorescent dye conjugated to Ni²⁺: nitrilotriacetic acid (NTA) complex. The Ni²⁺ binds specifically to the oligohisitidine domain of the His-tagged fusion protein allowing specific detection of His-tagged fusion proteins from a mixture of endogenous proteins.

The fluorescent dye has maximum excitation at 560 nm (the dye can also be excited at 300 nm but with a lower efficiency) and maximum emission at 590 nm (see the following figure). This allows you to detect the InVision[™] His-tag Stain signal using a UV transilluminator equipped with a camera (capable of integration) or a laser-based scanner.

Continued on next page

Product Description, Continued

Features The important features of the InVision[™] His-tag In-gel Stain are:

- His-tagged fusion protein sensitivity at the picomole level and staining is linear over 4 orders of magnitude
- Capable of detecting C-terminal, N-terminal, and internal His tag on fusion proteins
- Directly detect His-tagged fusion proteins in the gel without the need for western blotting and detection
- Supplied as a ready-to-use solution
- Staining complete in < 3 hours
- Staining compatible with downstream applications such as Coomassie staining, fluorescent staining, silver staining, western blotting, Edman sequencing, or mass spectrometry analysis

Proteins containing a C-terminal, N-terminal, and internal His tag can be stained with the InVision[™] His-tag In-gel Stain. However, the staining intensity may vary and is dependent on the individual protein.

The staining intensity is also sensitive to the number of moles of protein contained in a protein band as 1 molecule of InVision[™] His-tag In-gel Stain binds to only 1 oligohistidine tag molecule of the protein.

For example, if you load 150 ng/band of 2 proteins with a molecular weight of 150 kDa and 30 kDa, respectively, after staining with InVision[™] His-tag In-gel Stain the 30 kDa band stains more intensely than the 150 kDa band. This is because there is only 1 picomole of the 150 kDa band while there are 5 picomoles of the 30 kDa band in the total mass loaded (150 ng/band).

Experimental Overview

Introduction	To visualize His-tagged fusion protein bands after staining, you will need a UV transilluminator equipped with a camera or a laser-based scanner. See Visualize the Gel .
Experimental Outline	After electrophoresis, the proteins are fixed in the mini-gel for 1 hour. The gel is washed to remove the fixative. Staining is performed at room temperature for 1 hour with the ready- to use InVision [™] His-tag In-gel Stain. The stain is washed and His-tagged fusion protein bands are visualized using a UV transilluminator and a standard imaging system equipped with an ethidium bromide filter. The protein bands can also be imaged using a laser-based scanner. The gel can be stained with Coomassie, silver, or fluorescent stains for total protein content after InVision [™] staining.
Visualize the Gel	 For optimal visualization of fluorescent bands, you will need a: UV transilluminator (302 nm) equipped with a camera capable of integration To view and photograph a gel on the UV transilluminator, use a video camera, CCD (Charged Couple Device) camera, or a cooled CCD camera with ethidium bromide filter or band pass filter encompassing the emission maxima (590 nm) of the stain. A Polaroid[®] camera is not recommended. Note: You can use 365 nm UV transilluminator, but you may have to expose the gel for a longer time, as the sensitivity is lower than using 302 nm UV transillumination.
	 or Laser-based scanner with a laser line that falls within the excitation maxima of the stain (560 nm), and a 560 nm long pass filter or a band pass filter centered near the emission maxima of 590 nm. The sensitivity of detection is 2-fold more with laser-based scanners than with UV transillumination using a 532 nm laser line and a 560 nm long pass filter.

Methods

Using InVision[™] His-tag In-gel Stain

Introduction	Instructions for using InVision [™] His-tag In-gel Stain are described on the following pages. Use the staining protocol specific for each gel type. The total staining time is ~2.5 hours.
	An alternate, quick microwave staining protocol is on page 10.
Materials Required	 Ultrapure water (>18 megohm/cm resistance recommended)
but not	• Staining tray (a polypropylene tray is recommended)
Supplied	Orbital shaker
	Acetic acid
	• 100% ethanol or methanol
	• 20 mM Phosphate buffer, pH 7.8 (see page 6 for a recipe)
Positive Control	The BenchMark [™] His-tagged Protein Standard is ideal for use as a positive control for the InVision [™] His-tag In-gel Stain. The standards are formulated to allow simultaneous detection of standards and your His-tagged fusion protein on the gel using the staining protocol described in this manual. The standards are included in the InVision [™] His-tag In-gel Staining Kit (Cat. no. LC6033).
	Load 5 µL of the BenchMark [™] His-tagged Protein Standard on a 1.0-mm thick mini-gel and proceed to staining.
	C

Using InVision[™] His-tag In-gel Stain, Continued

For optimal staining results, follow these guidelines:

- Use 5 µL of BenchMark[™] His-tagged Protein Standard on a mini-gel as a positive control for staining
- The SDS content in the gel must be less than 0.1%
- Wear gloves and laboratory coat while handling and staining gels
- Use clean containers and designate these containers for staining purposes only
- Make sure that the size of the container permits free movement of the gel during shaking and complete immersion in solution while staining and washing
- Avoid touching the gel with bare hands while handling or changing solutions
- Always clean the imaging system prior to imaging the gel to minimize any background fluorescence
- Perform all incubations for staining and washing steps at room temperature on an orbital shaker set at 1 revolution per second

Using InVision[™] His-tag In-gel Stain,

Continued

Prepare Solutions	Prepare the following solutions for fixing and washing steps:Fixing Solution for NuPAGE[®] Novex Gels			
Solutions	٠	0		
		You will need 100 mL fixa	tive for 1 mini-gel.	
		Ethanol or methanol	40 mL	
		Acetic acid	10 mL	
		Ultrapure water	to 100 mL	
	• Fixing Solution for Tris-Glycine Gels			
	You will need 200 mL fixative for 1 mini-gel and 40 for 1 large format gel.		tive for 1 mini-gel and 400 mL	
		Ethanol or methanol	100 mL	
		Acetic acid	20 mL	
		Ultrapure water	to 200 mL	
	•	20 mM Phosphate Buffer	pH 7.8 (1000 mL)	
		Sodium phosphate (monobasic) 2.6 g		
		Adjust pH to 7.8 with 3 M	NaOH	
		Ultrapure water	to 1000 mL	

Using InVision[™] His-tag In-gel Stain, Continued

Staining NuPAGE [®]	For general use with 1.0-mm thick NuPAGE [®] Novex Gels $(8 \times 8 \text{ cm})$.
Gels	For staining 2 mini-gels or 1.5-mm thick mini-gels, double all solution volumes while maintaining the incubation time.

Step	Solution	Vol/Gel	Time
1	After electrophoresis, fix the gel in the NuPAGE [®] Fixing Solution (see page 6 for recipe). See the following Note .	100 mL	1 hour
2A	Decant the Fixing Solution and wash the gel	100 mL	10 minutes
2B	twice with ultra pure water.	100 mL	10 minutes
3	Incubate the gel in the ready-to-use solution of InVision [™] His-tag In-gel Stain (see the following Note). Be sure the gel is immersed in staining solution. Decant the stain.	25 mL	1 hour
4A	Wash the gel twice with 20 mM phosphate	100 mL	10 minutes
4B	buffer, pH 7.8 (see page 6 for recipe). *If the background is high, perform a third wash step with water for 10 minutes. Avoid excessive washing of the gel (see the following Note).	100 mL	10 minutes*
5	Proceed to imaging the gel immediately (page 1	1).	

- To improve the sensitivity, you may store the gel overnight in fixative or in the InVision[™] His-tag In-gel Stain.
- Excessive washing of the gel in the phosphate buffer after staining may result in loss of sensitivity.
- Do not re-use the stain. After staining is complete, dispose of the stain as described on page 10.

Using InVision[™] His-tag In-gel Stain,

Continued

Staining
Tris-GlycineFor general use with 1.0-mm or 1.5-mm thick Tris-Glycine
mini-gels (8 × 8 cm).Mini-GelsNote: The SDS content of the gel must be less than 0.1%.For staining 2 mini-gels, double all solution volumes while

For staining 2 mini-gels, double all solution volumes while maintaining the incubation time.

Step	Solution	Vol/Gel	Time
1	After electrophoresis, fix the gel in the Fixing Solution for Tris-Glycine gels (see page 6 for recipe). See the Note on page 7.	200 mL	1 hour
2A	Decant the Fixing Solution and wash the gel	200 mL	10 minutes
2B	twice with ultra pure water.	200 mL	10 minutes
3	Incubate the gel in the ready-to-use solution of InVision [™] His-tag In-gel Stain (see the Note on page 7). Be sure the gel is immersed in staining solution. Decant the stain.	25 mL	1 hour
4A	Wash the gel twice with 20 mM phosphate	200 mL	10 minutes
4B	buffer, pH 7.8 (see page 6 for recipe). *If the background is high, perform a third wash step with water for 10 minutes. Avoid excessive washing of the gel (see the Note on page 7).	200 mL	10 minutes*
5	Proceed to imaging the gel immediately (page 1	1).	

To stain **large format** gels, see page 9.

Using InVision[™] His-tag In-gel Stain, Continued

Staining Tris-Glycine Large Format Gels

For general use with **1.0 mm or 1.5 mm** thick Tris-Glycine large format gels $(18 \times 18 \text{ cm})$.

To stain Tris-Glycine mini-gels, see page 8.

Step	Solution	Vol/Gel	Tiı	Time	
			1.0 mm	1.5 mm	
1	After electrophoresis, fix the gel in the Fixing Solution for Tris-Glycine gels (see page 6 for recipe). See the Note on page 7.	400 mL	1 hour	90 min.	
2A	Decant the Fixing Solution and wash	400 mL	10 min.	15 min.	
2B	the gel twice with ultra pure water.	400 mL	10 min.	15 min.	
3	Incubate the gel in the ready-to-use solution of InVision [™] His-tag In-gel Stain (see the Note on page 7). Be sure the gel is immersed in staining solution. Decant the stain.	100 mL	1 hour	90 min.	
4A	Wash the gel twice with 20 mM	400 mL	10 min.	15 min.	
4B	phosphate buffer, pH 7.8 (see page 6 for recipe).	400 mL	10 min*	15 min.	
	*If the background is high, perform a third water wash step for 10 minutes. Avoid excessive washing of the gel (see the Note on page 7).				
5	Proceed to imaging the gel immediately	(page 11).			

Staining E-PAGE[™] 96 Gels

The E-PAGE[™] 96 gels are thicker than standard mini-gels. To obtain better staining sensitivity, we recommend transferring proteins of the E-PAGE[™] 96 gels onto a nitrocellulose membrane. Then stain the blot with the InVision[™] His-tag In-gel Stain as described in **Detect His-tagged Fusion Proteins on a Blot** on page 14.

Using InVision[™] His-tag In-gel Stain,

Continued

Microwave Procedure

The microwave staining procedure uses a microwave oven to rapidly stain His-tagged fusion proteins in a mini-gel. You will need a microwave oven (~1000 W) and microwaveable staining tray.

The total staining time is ~70 minutes.

For general use with **1.0-mm** thick NuPAGE[®] Novex and Tris-Glycine mini-gels (8 × 8 cm).

- 1. **Fix the gel** in 100 mL of the appropriate Fixing Solution (see page 6 for preparing fixing solution). Microwave at high power (~1000 W) for 30 seconds. Remove the gel from the microwave and gently agitate the gel for 10 minutes at room temperature. Decant the fixative.
- 2. Wash the gel in 100 mL ultrapure water. Microwave at high power for 30 seconds. Remove the gel from the microwave and gently agitate the gel for 5 minutes at room temperature. Repeat the wash step 1 more time.
- 3. Stain the gel in 25 mL ready-to-use solution of InVision[™] His-tag In-gel Stain. Microwave at high power for 30 seconds. Remove the gel from the microwave and gently agitate the gel for 40 minutes at room temperature on an orbital shaker. Decant the stain (see **Dispose of the** Stain for stain disposal information). Do not re-use the stain.
- 4. **Wash the gel** in 100 mL 20 mM phosphate buffer, pH 7.8 (see page 6 for a recipe). Microwave at high power for 30 seconds. Remove the gel from the microwave and gently agitate the gel for 5 minutes at room temperature. Repeat the wash step 1 more time.

Note: Additional washes with 20 mM phosphate buffer, pH 7.8, may be necessary in some cases to reduce the background.

Proceed to imaging the gel immediately, page 11.

Dispose of the Stain For disposal requirements in your area, consult your safety officer. For SDS information, see page 19.

Visualizing and Imaging the Gel

Introduction	After staining is complete, proceed immediately to visualizing and imaging the gel. To obtain the best results, use the appropriate camera and filters and follow the recommendations listed on page 12.
Q Important	Unlike visualizing DNA bands stained with ethidium bromide, the fluorescent protein bands stained with InVision [™] His-tag In-gel Stain cannot be visualized by just placing the gel on a UV transilluminator. To visualize the His-tagged fusion protein bands, it is important to use a photographic camera or a CCD camera with a UV transilluminator as the integrating capability of the camera allows you to visualize bands that cannot be detected by eye.
Materials Needed	 For optimal visualization of protein bands, you will need a: UV transilluminator (302 nm) equipped with a camera capable of integration To view and photograph a gel on the UV transilluminator, use a video camera, CCD (Charged Couple Device) camera, or a cooled CCD camera with ethidium bromide filter or band pass filter encompassing the emission maxima (590 nm) of the stain. A Polaroid[®] camera is not recommended.
	Note: You can use 365 nm UV transilluminator, but you may have to expose the gel for a longer time, as the sensitivity is lower than using 302 nm UV transillumination.
	 or Laser-based scanner with a laser line that falls within the excitation maxima of the stain (560 nm), and a 560 nm long pass filter or a band pass filter centered near the emission maxima of 590 nm. The sensitivity of detection is 2-fold more with laser-based scanners than with UV transillumination using a 532 nm laser line and a 560 nm long pass filter.

Visualizing and Imaging the Gel, Continued

- To visualize the bands, it is important to use a photographic camera or a CCD camera with a UV transilluminator as the integrating capability of the camera allows visualization of bands that cannot be detected by eye.
- Be sure that the aperture on the camera is open wide to allow enough light entry and select ethidium bromide, Cy3[®], or rhodamine filter on the camera.
- Make sure the camera is connected to an imaging software that allows contrast adjustment for viewing the best image.
- Lower the PMT (Photo Multiplier Tube) voltage, if using a laser scanner to avoid saturation of the detector.
- Record a permanent image of the gel prior to staining the gel with other protein stains and gel drying since the staining with InVision[™] His-tag In-gel Stain is not permanent and is lost by excessive washing, storing the gel in phosphate buffer, staining with other protein stains, or drying the gel.

Imaging the Gel

- 1. Place the gel on a UV transilluminator (302 nm) and make sure the ethidium bromide, Cy3[®], or rhodamine filter is selected on the camera. You may also use a laser-based scanning instrument (see page 11 for more details).
 - 2. Image the gel with a video or CCD camera with the appropriate filters using 4–8 second exposure. You may need to adjust the brightness and contrast to reduce any faint non-specific bands. During imaging of the gel, the fluorescent signal is stable for more than 20 minutes.

You should see fluorescent bands of His-tagged fusion proteins and the gel should have minimal background as shown on page 15.

Note: If the background is high, perform an additional wash step and re-image the gel. We do not recommend storing the gel in phosphate buffer as the sensitivity of the stain gradually decreases.

Downstream Applications

Introduction After InVision[™] His-tag In-gel Staining of His-tagged fusion proteins, the gel is compatible with any downstream applications such as:

- Coomassie staining
- Fluorescent staining
- Silver staining
- Western blotting
- Edman sequencing
- Mass spectrometry analysis

Staining the Gel for Total Protein

Use the following instructions for staining the gel with protein stains to view the total protein content of the sample.

- 1. Record a permanent image of the gel after staining the His-tagged fusion proteins with InVision[™] Stain.
- 2. Follow the appropriate staining protocol.

Note: A fixing step is not necessary for any total protein staining procedure as the proteins are fixed in the gel during InVision[™] His-tag In-gel Staining procedure.

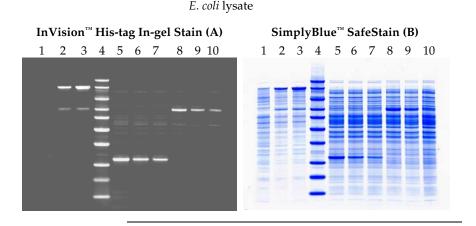
SimplyBlue[™] SafeStain Procedure

- Stain the gel for 1 hour with gentle shaking at room temperature with enough SimplyBlue[™] SafeStain (see page vi for ordering information) to cover the gel.
- 2. Wash the gel with 100 mL deionized water for 1–3 hours.

Coomassie R-250 Staining Procedure

You may use any Coomassie R-250 staining procedure of choice. Perform the staining and destaining steps using a procedure of choice.

Fluorescent Protein Staining Procedure


Follow the manufacturer's instructions to stain and view the protein bands on the gel using SYPRO[®] Ruby Protein Gel Stain (see page 18 for ordering information).

Downstream Applications, Continued

Western Blot	 To perform western blotting after InVision[™] His-tag In-gel Staining of His-tagged fusion proteins: Record a permanent image of the gel after staining of His-tagged fusion proteins. Equilibrate the gel in 1X SDS Running Buffer for 1 hour. Perform western blotting and immunodetection using a method of choice. 		
Detect His-tagged Fusion Proteins on a Blot	To stain His-tagged fusion proteins transferred onto a nitrocellulose membrane (8 × 8 cm), use the following protocol. This procedure is not recommended for staining PVDF membranes.		
	1. Rinse the nitrocellulose membrane (containing transferred proteins) with deionized water for 2 minutes.		
	 Stain the nitrocellulose membrane with 20 mL of ready-to-use InVision[™] His-tag In-gel Stain for 20 minutes at room temperature. 		
	3. Rinse the membrane briefly with deionized water.		
	4. Place the wet or dry membrane on a UV transilluminator equipped with a camera. Visualize and image the membrane by exposing the membrane to UV light from the bottom or from the top (you may place the UV transilluminator on its side to illuminate the blot or use epi-illumination) for 4–8 seconds. You may also use a laser-based scanner with appropriate filters to visualize and image the membrane.		
Prepare Protein Bands for MS Analysis	Proteins stained with InVision [™] His-tag In-gel Stain are compatible with mass spectrometry (MS) analysis.		
	After InVision [™] His-tag In-gel Staining of His-tagged fusion proteins, excise the desired protein band/spot, and wash the gel plug thoroughly with ultrapure water to remove any bound nickel ions that may interfere with enzymatic digestion prior to MS analysis.		
	Prepare your samples for MS analysis using a method of choice or as directed by your core facility.		

Expected Results

An example of a mini-gel stained with InVision[™] His-tag Results In-gel Stain is shown below. Samples were electrophoresed on a NuPAGE® Novex 4–12% Bis-Tris Gel. The gel was stained with InVision[™] His-tag In-gel Stain using the protocol on page 7 and imaged with a UV transilluminator equipped with a video camera (AlphaImager[®] Imaging System) using a 4 second exposure. The gel was subsequently Coomassie-stained for total protein with SimplyBlue[™] SafeStain (B). Lanes 1–3: His/LacZ expression in BL21 E. coli lysate uninduced, 1 hour post induction, 2 hours post induction, respectively Lane 4: 5 μL BenchMark[™] His-tagged Protein Standard Lanes 5–7: 160 ng, 80 ng, 40 ng, respectively, of pure 25 kDa His-tagged fusion protein mixed with BL21 Star[™] E. coli lysate Lane 8–10: 160 ng, 80 ng, 40 ng, respectively, of pure 60 kDa His-tagged fusion protein mixed with BL21 Star[™]

Troubleshooting

Introduction

Solutions to possible problems you might encounter while using the InVision[™] His-tag In-gel Stain are listed in the following table.

Observation	Cause	Solution
No bands or weak signal	Check staining protocol	Use appropriate staining protocol based on the gel type. Use BenchMark [™] His-tagged Protein Standard as a positive control to verify staining reagents and protocol. Avoid excessive washing of the gel.
	The gel is not visualized or imaged properly	• Be sure to visualize the gel using a UV transilluminator equipped with a camera (page 3) or a laser-based scanner using the correct filters (page 3). A Polaroid [®] camera is not recommended.
		 Make sure the aperture on the camera is open wide to allow enough light entry and that the camera is connected to an imaging software that allows contrast adjustment for viewing the best image.
		• Visualize the gel immediately after completing the washing steps. Storing the gel in phosphate buffer decreases the signal intensity.
	Low protein load or expression level	• Check total protein content of the gel by staining the gel with a total protein stain (page 13). Load at least 1 picomole of the His-tagged fusion protein for detection.
		• Make sure the His-tag is in-frame and the protein is expressed properly.

Troubleshooting, Continued

Observation	Cause	Solution
High, uneven background	Missed washing steps	Be sure to wash the gel twice with 20 mM phosphate buffer. If the background is high, perform a third water wash step for 10 minutes.
	Poor water quality	Use ultrapure water (>18 megohm/cm) for washing and preparing phosphate buffer.
	Protein overloaded	Decrease the protein concentration or lower the sample volume.
	Dirty imaging platform	Always clean the imaging system with a paper towel prior to imaging the gel to minimize any background fluorescence.
	Non-specific bands	Highly basic proteins and divalent metal binding proteins such as carbonic anhydrase (30 kDa), SlyD (21 kDa), and phosphorylase B (97 kDa) may cross-react with the stain producing non-specific bands.
Additional bands seen with BenchMark [™] His-tagged Protein Standard	Overexposure	• Performing a longer exposure to detect low expression levels of the desired protein may result in staining of minor contaminants in the BenchMark [™] His- tagged Protein Standard.
		• Load less BenchMark [™] His-tagged protein Standard or perform a short exposure to visualize and image the standard and then perform a longer exposure to visualize and image proteins expressed at low levels.

Appendix

Accessory Products

Additional Products

Additional products are available separately. Ordering information is listed below. For more details, visit <u>www.lifetechnologies.com</u> or contact Technical Support (page 19).

Product	Quantity	Catalog no.
BenchMark™ His-tagged Protein Standard	125 μL	LC5606
NuPAGE® Novex 4–12% Bis-Tris Gels	10 gels	NP0321BOX
Novex 10% Tris-Glycine Gels	10 gels	EC6075BOX
E-PAGE [™] 96 Gels	1 kit	EP096-06
XCell SureLock® Mini-Cell	1 kit	EI0001
SimplyBlue [™] SafeStain	1 L	LC6060
SilverQuest [™] Silver Staining Kit	1 kit	LC6070
ProBond [™] Purification System	6 purif.	K850-01
Ni-NTA Purification System	6 purif.	K950-01
SYPRO [®] Ruby Protein Gel Stain	1 L	S-12000

Technical Support

Obtaining support	 For the latest services and support information for all locations, go to <u>www.lifetechnologies.com/support</u>. At the website, you can: Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities Search through frequently asked questions (FAQs) Submit a question directly to Technical Support (<u>techsupport@lifetech.com</u>) Search for user documents, Safety Data Sheets (SDSs), vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents Obtain information about customer training Download software updates and patches
Safety Data Sheets (SDS)	Safety Data Sheets (SDSs) are available at www.lifetechnologies.com/support.
Certificate of Analysis	The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to <u>www.lifetechnologies.com/support</u> and search for the Certificate of Analysis by product lot number, which is printed on the box.

Technical Support, Continued

Limited Warranty

Life Technologies Corporation is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about a Life Technologies product or service, contact our Technical Support Representatives. All Life Technologies products are warranted to perform according to specifications stated on the certificate of analysis. The Company will replace, free of charge, any product that does not meet those specifications. This warranty limits the Company's liability to only the price of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. The Company reserves the right to select the method(s) used to analyze a product unless the Company agrees to a specified method in writing prior to acceptance of the order.

Life Technologies makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore the Company makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, report it to our Technical Support Representatives.

Life Technologies Corporation shall have no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

Purchaser Notification

Limited Use Label License: Research Use Only

The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial services of any kind, including, without limitation, reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact <u>outlicensing@lifetech.com</u> or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.

Limited Use Label License No: 166 bis-Nickel Chelate Label

The purchase of this product conveys to the buyer the nontransferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research.

Purchaser Notification, Continued

Limited Use Label License No: 166 bis-Nickel Chelate Label, Continued Life Technologies Corporation will not assert a claim against the buyer of infringement of patents owned by Life Technologies Corporation and claiming this product based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. If the purchaser is not willing to accept the limitations of this limited use statement, Life Technologies is willing to accept return of the product with a full refund. For information on purchasing a license to this product for purposes other than research, contact outlicensing@lifetech.com or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.

©2012 Life Technologies Corporation. All rights reserved.

The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

AlphaImager is a registered trademark of Alpha Innotech Corporation. Cy3 is a registered trademark of GE Healthcare.

Polaroid is a registered trademark of Polaroid Corporation.

Notes

Notes

Headquarters 5791 Van Allen Way | Carlsbad, CA 92008 USA Phone +1 760 603 7200 | Toll Free in USA 800 955 6288

For support visit www.invitrogen.com/support or email techsupport@invitrogen.com

www.lifetechnologies.com

