# Human SARS-CoV-2 Spike (trimer) IgM ELISA Kit

Catalog Number BMS2324 (96 tests), BMS2324TEN (10 × 96 tests)

Pub. No. MAN0019917 Rev. C.0 (32)

### **Product description**

The Human SARS-CoV-2 Spike (trimer) IgM ELISA Kit is a solid-phase sandwich Enzyme-Linked Immunosorbent Assay (ELISA) designed to detect and quantify the level of Human SARS-CoV-2 IgM in serum and plasma.

### Contents and storage

Upon receipt, store the kit at 2°C to 8°C.

|                                                   | Cat. No.           |                               |
|---------------------------------------------------|--------------------|-------------------------------|
| Contents                                          | BMS2324 (96 tests) | BMS2324TEN<br>(10 × 96 tests) |
| Human SARS-CoV-2 IgM<br>High Control, lyophilized | 1 vial             | 10 vials                      |
| Human SARS-CoV-2 IgM Calibrator, lyophilized      | 1 vial             | 10 vials                      |
| Human SARS-CoV-2 IgM<br>Low Control, lyophilized  | 1 vial             | 10 vials                      |
| Human SARS-CoV-2 Spike (trimer) Coated Plate      | 1 plate            | 10 plates                     |
| Human SARS-CoV-2 IgM<br>HRP Conjugate (100X)      | 0.120 mL           | 10 × 0.120 mL                 |
| Assay Buffer (20X)                                | 50 mL              | 5 × 50 mL                     |
| Wash Buffer Concentrate (20X)                     | 50 mL              | 6 × 50 mL                     |
| Stabilized Chromogen (Tetramethylbenzidine)       | 15 mL              | 10 × 15 mL                    |
| Stop Solution                                     | 15 mL              | 100 mL                        |
| Plate Covers, adhesive                            | 2                  | 20                            |

### Materials required but not supplied

- · Distilled or deionized water
- Microtiter plate reader with software capable of measurement at 450 nm, 490 nm, and 650 nm (polychromatic reading)
- Plate washer–automated or manual (squirt bottle, manifold dispenser, or equivalent)
- Calibrated adjustable precision pipettes and glass or plastic tubes for diluting solutions; beakers, flask and cylinders for preparation of reagents

### Before you begin

**IMPORTANT!** Reagents are lot-specific. Do not mix or interchange different reagent lots from various kit lots.

- Review the Procedural guidelines and Plate washing directions in the ELISA Technical Guide available at thermofisher.com.
- Allow reagents to reach room temperature before use. Mix to redissolve any precipitated salts.
- For small-volume tubes, make sure to centrifuge the tubes before use to ensure pellets are not adhered to the cap.

### Sample preparation guidelines

- · Collect samples in pyrogen/endotoxin-free tubes.
- Freeze samples after collection if samples will not be tested immediately. Avoid multiple freeze-thaw cycles of frozen samples. Thaw completely and mix well prior to analysis.

### Prepare 1X Wash Buffer

- Dilute 25 mL of Wash Buffer Concentrate (20X) with 475 mL of deionized or distilled water. Label as 1X Wash Buffer.
- Store the concentrate and 1X Wash Buffer in the refrigerator. Use the diluted buffer within 30 days.

## Prepare 1X Assay Buffer

- Dilute 5 mL of Assay Buffer (20X) with 95 mL of deionized or distilled water. Label as 1X Assay Buffer.
- Store 1X Assay Buffer at 2–8°C. The diluted buffer is stable for 30 days.

### Predilute samples

Due to the high sensitivity of the test, samples must be prediluted prior to the 1:10 dilution on the plate. The following dilution factors are recommended as a starting point. Because the SARS-CoV-2 IgM titers can be high, each investigator should determine the optimal dilution depending on whether a qualitative or quantitative assay is being performed.

Use a qualitative assay when trying to determine the absense or presence of antibodies. Use a quantitative assay if it is necessary to determine the titer levels of the antibody.

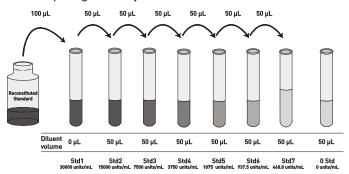
- Perform sample dilutions with 1X Assay Buffer.
- For qualitative assays, dilute serum and plasma samples 1:100 with 1X Assay Buffer.

#### Reconstitute controls

High, Calibrator (Medium), and Low Controls can be used in the assay.

- Reconstitute controls. See control vial labels for reconstitution volumes.
  - a. Reconstitute Human SARS-CoV-2 IgM High Control to 30,000 units/mL with deionized or distilled water.
  - **b.** Reconstitute Human SARS-CoV-2 IgM Calibrator to 1,875 units/mL with deionized or distilled water.
  - c. Reconstitute Human SARS-CoV-2 IgM Low Control to 469 units/mL with deionized or distilled water.
- Swirl or mix gently, then incubate for 10 minutes. Use the controls within 15 minutes of reconstitution.




# (Optional) Dilute standards for quantitative assay

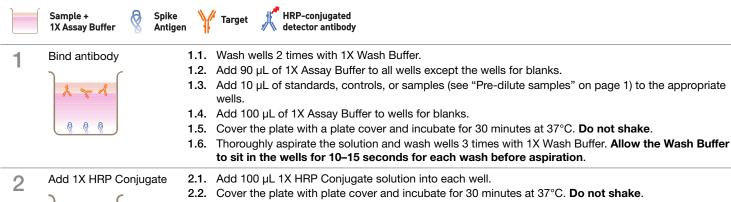
For relative quantification, prepare a 2-fold serial dilution of the High Control to generate a standard curve.

Note: Use glass or plastic tubes for diluting standards.

- 1. Add 100 µL of reconstituted High control to a tube (Std1).
- 2. Add 50 µL 1X Assay Buffer to each of 7 tubes (Std2-Std7, 0 Std).
- 3. Make serial dilutions of the standard as shown in the following dilution diagram. Mix thoroughly between steps.

4. Remaining reconstituted standard should be discarded after completing the assay.




# Prepare 1X HRP conjugate solution

Note: Prepare 1X HRP conjugate solution within 15 minutes of usage.

For each coated plate, pipet 120 µL HRP Conjugate (100X), and dispense the solution into a tube containing 11.88 mL of 1X Assay Buffer. Mix thoroughly.

### Perform Assay (Total assay time: 1.5 hours)

- Allow all components to reach room temperature before use. Mix all liquid reagents prior to use.
- Do not perform this assay on a shaker.



- 3.1. Add 100 µL Substrate Solution to each well. The substrate solution begins to turn blue.

to sit in the wells for 10-15 seconds for each wash before aspiration.

3.2. Incubate for 15 minutes at room temperature.

Note: TMB should not touch aluminum foil or other metals.

Add Substrate Solution 3



Add Stop Solution 4



Add 100 µL Stop Solution to each well. Tap the side of the plate to mix. The solution in the wells changes from blue to yellow.

2.3. Thoroughly aspirate the solution and wash wells 3 times with 1X Wash Buffer. Allow the Wash Buffer

# Read the plate and analyze results

- 1. Read the absorbance at 450 nm. Read the plate immediately after adding the Stop Solution.
- 2. Determine the results of the assay.

| Qualitative assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quantitative assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculate the ratio of values using the equation:  Ratio = \frac{Absorbance Sample}{Absorbance Calibrator}  • If the ratio is <1, the target lg is absent.  • If the ratio is 1–1.3, the result is indeterminate.  • If the ratio is >1.3, the target lg is present.  • Divide the absorbance of the Low Control by the absorbance of the Calibrator as a negative control (ratio <1).  • Divide the absorbance of the High Control by the absorbance of the Calibrator as a positive control (ratio >1.3). | <ol> <li>If the High Control was used to generate a standard curve, use curve-fitting software to generate the standard curve. A four-parameter algorithm provides the best standard curve fit. Optimally, the background absorbance may be subtracted from all data points, including standards, unknowns and controls, prior to plotting.</li> <li>Read the concentrations for unknown samples and controls from the standard curve. Multiply value(s) obtained for sample(s) by the appropriate factor to correct for the sample dilution.</li> </ol> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note: Dilute samples producing signals greater than the upper limit of the standard curve in Standard Diluent Buffer and reanalyze. Multiply the concentration by the appropriate dilution factor.                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Samples are diluted on the plate 1:10 to a final dilution of 1:1,000 for quantitative assays.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Performance characteristics

### Standard curve example

The following data were obtained for the various standards over the range of 0 to 3,000 units/mL Hu SARS-CoV-2 IgM.

| Standard High Control (units/mL)      | Optical Density (450 nm) |  |
|---------------------------------------|--------------------------|--|
| 3,000                                 | 2.60                     |  |
| 1,500                                 | 1.97                     |  |
| 750                                   | 1.29                     |  |
| 375                                   | 0.74                     |  |
| 187.50                                | 0.41                     |  |
| 93.75                                 | 0.17                     |  |
| 46.88                                 | 0.09                     |  |
| 0                                     | 0.07                     |  |
| Typical values for qualitative assays |                          |  |
| Calibrator                            | 0.40                     |  |
| High Control                          | 2.60                     |  |
| Low Control                           | 0.08                     |  |

## Sensitivity

The limit of detection of human SARS-CoV-2 IgM is defined as the analyte concentration resulting in an absorbance significantly higher than that of the dilution medium (mean plus 2 standard deviations) was determined to be 5.36 units/mL (mean of 3 independent assays).

## Reproducibility

#### Intra-assay precision

Reproducibility within the assay was evaluated in three independent experiments. Each assay was carried out with six replicates of serum samples containing different concentrations of human SARS-CoV-2 IgM. Two standard curves were run on each plate. The following data show the mean human SARS-CoV-2 IgM concentration and the

coefficient of variation for each sample. The calculated overall intraassay coefficient of variation was 8.1%.

| Sample | Experiment no. | Mean<br>concentration<br>(kU/mL) | % Coefficient of<br>Variation |
|--------|----------------|----------------------------------|-------------------------------|
|        | 1              | 133.7                            | 10.2                          |
| 1      | 2              | 94.7                             | 8.6                           |
|        | 3              | 103.0                            | 7.2                           |
|        | 1              | 1040.3                           | 16.6                          |
| 2      | 2              | 929.6                            | 8.3                           |
|        | 3              | 1224.3                           | 11.5                          |
|        | 1              | 330.1                            | 7.5                           |
| 3      | 2              | 327.2                            | 8.6                           |
|        | 3              | 310.4                            | 6.5                           |
|        | 1              | 212.4                            | 4.3                           |
| 4      | 2              | 165.1                            | 5.9                           |
|        | 3              | 158.0                            | 7.1                           |
|        | 1              | 308.0                            | 4.5                           |
| 5      | 2              | 286.2                            | 12.5                          |
|        | 3              | 336.9                            | 7.2                           |
|        | 1              | 1279.1                           | 4.9                           |
| 6      | 2              | 1199.6                           | 14.4                          |
|        | 3              | 1366.7                           | 3.7                           |
|        | 1              | 172.2                            | 6.3                           |
| 7      | 2              | 135.0                            | 8.3                           |
|        | 3              | 136.8                            | 6.0                           |

#### Inter-assay precision

Assay to assay reproducibility within one laboratory was evaluated in three independent experiments. Each assay was carried out with six replicates of serum samples containing different concentrations of human SARS-CoV-2 IgM. Two standard curves were run on each plate. Data below show the mean human SARS-CoV-2 IgM concentration and the coefficient of variation calculated on 18 determinations of each sample. The calculated overall inter-assay coefficient of variation was 11.6%.

| Sample | Mean (kU/mL) | % Coefficient of Variation |
|--------|--------------|----------------------------|
| 1      | 110.4        | 18.6                       |
| 2      | 1064.7       | 14.0                       |
| 3      | 332.6        | 3.3                        |
| 4      | 178.5        | 16.6                       |
| 5      | 310.4        | 8.2                        |
| 6      | 1281.8       | 6.5                        |
| 7      | 148.0        | 14.2                       |

#### Recovery

Spike recovery was evaluated by spiking three different levels of human SARS-CoV-2 IgM into serum and plasma (EDTA, heparin, citrate). Recoveries were determined with two replicates each. The amount of endogenous human SARS-CoV-2 IgM in unspiked samples was subtracted from the spike values.

| Sample           | High spike<br>(mean %) | Medium spike<br>(mean %) | Low spike<br>(mean %) |
|------------------|------------------------|--------------------------|-----------------------|
| Serum            | 100                    | 103                      | 116                   |
| Plasma (EDTA)    | 108                    | 111                      | 123                   |
| Plasma (citrate) | 81                     | 103                      | 130                   |
| Plasma (heparin) | 98                     | 114                      | 145                   |

### Parallelism

Serum and plasma (EDTA, citrate, heparin) samples spiked with different levels of human SARS-CoV-2 IgM were analysed at 2-fold serial dilutions with two replicates each.

| Sample              | Dilution | Expected recovery (mean %) |
|---------------------|----------|----------------------------|
| Serum               | 1:2000   | 99                         |
|                     | 1:4000   | 102                        |
|                     | 1:8000   | 107                        |
| Plasma (EDTA)       | 1:2000   | 107                        |
|                     | 1:4000   | 109                        |
|                     | 1:8000   | 72                         |
| Plasma (citrate)    | 1:2000   | 93                         |
|                     | 1:4000   | 110                        |
|                     | 1:8000   | 119                        |
| Plasma (heparin)    | 1:2000   | 93                         |
|                     | 1:4000   | 109                        |
|                     | 1:8000   | 72                         |
| SARS-CoV-2 positive | 1:2000   | 107                        |
| sample              | 1:4000   | 109                        |
|                     | 1:8000   | 72                         |

### Sample stability

Freeze-thaw stability

Serum samples were stored at -20°C and subjected to three freeze-thaw cycles, after which the human SARS-CoV-2 IgM levels were determined. There was no significant loss of human SARS-CoV-2 IgM immunoreactivity detected by freezing and thawing.

Storage stability

Aliquots of serum samples (spiked or unspiked) were stored at  $-20^{\circ}$ C,  $2-8^{\circ}$ C, or room temperature (RT) for 24 hours, after which the human SARS-CoV-2 IgM levels were determined. There was no significant loss of SARS-CoV-2 IgM immunoreactivity detected during storage under the conditions that were tested.

### Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale at <a href="https://www.thermofisher.com/us/en/home/global/terms-and-conditions.html">www.thermofisher.com/us/en/home/global/terms-and-conditions.html</a>. If you have any questions, please contact Life Technologies at <a href="https://www.thermofisher.com/support">www.thermofisher.com/support</a>.



Bender MedSystems GmbH | Campus Vienna Biocenter 2 | 1030 Vienna, Austria
For descriptions of symbols on product labels or product documents, go to thermofisher.com/symbols-definition.

The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Important Licensing Information: This product may be covered by one or more Limited Use Label Licenses. By use of this product, you accept the terms and conditions of all applicable Limited Use Label Licenses.

©2021 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. TaqMan is a registered trademark of Roche Molecular Systems, Inc., used under permission and license.

