INSTRUCTIONS

Pierce TiO₂ Phosphopeptide Enrichment and Clean-up Kit

88301 88303

Number	Description		
88301	Pierce TiO ₂ Phosphopeptide Enrichment and Clean-up Kit		
	Kit Contents:		
	TiO ₂ Spin Tips, 24 each		
	Trifluoroacetic Acid (TFA), 1mL	NOTE: Trifluoroacetic Acid, Lactic Acid and	
	Lactic Acid (90%), 2mL	Pyrrolidine components are shipped	
	Pyrrolidine, 200µL	separately from the remainder of the kit.	
	Centrifuge Column Adaptors, 6 each		
	Pierce Graphite Spin Columns, 24 columns		
88303	Pierce TiO ₂ Phosphopeptide Enrichment Spin Tips, 96 tips and 24 adapters		

Storage: Upon receipt store at 4°C. Product shipped at ambient temperature.

Introduction

The Thermo ScientificTM PierceTM TiO₂ Phosphopeptide Enrichment and Clean-up Kit enables efficient isolation of phosphorylated peptides from complex and fractionated protein digests for analysis by mass spectrometry (MS). Spherical porous titanium dioxide (TiO₂) combined with optimized buffers provide enhanced enrichment and identification of phosphopeptides with minimal nonspecific binding. The spin-column format is fast and easy to use and can enrich up to $100\mu g$ of phosphopeptides from $300-1000\mu g$ of digested protein sample. The kit's optimized protocol, buffer components and graphite spin columns result in a high yield of clean phosphopeptide samples ready for MS analysis.

Phosphorylation is a protein modification essential to biological functions such as cell signaling, growth, differentiation and division, and programmed cell death; however, phosphopeptides have high hydrophilicity and are low in abundance, resulting in poor chromatography, ionization and fragmentation. Phosphopeptide enrichment is therefore essential to successful MS analysis. The Pierce TiO_2 Phosphopeptide Enrichment and Clean-up Kit is compatible with our lysis, reduction, alkylation, digestion and graphite spin columns to provide a complete workflow for phosphopeptide enrichment and identification.

Important Product Information

- For best results perform all experiments using a centrifuge. Using a pipette to draw and expel liquid through the spin tip is strongly discouraged and may result in poor, varied results. Note that the Centrifuge Column Adaptors are reusable.
- For optimal results, desalt peptide samples with C18 before phosphopeptide enrichment.¹
- Because of the viscosity and ionic components in the binding and wash buffers for the TiO₂ tips and the hydrophilicity of enriched phosphopeptides, performing the graphite clean-up is necessary before MS analysis. Make sure samples are free of detergents before desalting with C18 or graphite cartridges.
- For optimal results, proceed with the entire procedure in a timely manner and avoid excessive resin drying between steps.
- Plastics used during handling of peptide samples can introduce contaminants that interfere with MS analysis and result in sample loss from nonspecific adsorption. Use high-quality receiver tubes. If necessary, receiver tubes used for final collection may be rinsed with 70% ACN/0.1% TFA. Minimizing sample transfers and freeze-thaw cycles before analysis will help minimize plastic contamination and sample loss.

2169.7

Procedure for Phosphopeptide Enrichment

A. Additional Materials Required

- Ammonium hydroxide
- Acetonitrile
- Ultrapure water

B. Material Preparation

Note: Prepare buffer reagents just before performing experiments.

Buffer	Component	1-6 Samples	24 Samples
	Ultrapure Water	100µL	402µL
Duffor A	Acetonitrile	401µL	1,601µL
buller A	TFA (100%)	2.0µL	8µL
	Total	503µL	2,011 μL
	Buffer A	1mL	5mL
Buffer B*	Lactic Acid (90%) [§]	400µL	2mL
	Total	1.4mL	7mL
	Ammonium Hydroxide (30%) [†]	20µL	100µL
Elution Buffer 1	Ultrapure Water	380µL	1.9mL
	Total	400µL	2mL
	Pyrrolidine	20µL	200µL
Elution Buffer 2*	Ultrapure Water	380µL	3.8mL
	Total	400µL	4mL
	Ultrapure Water	980µL	2.9mL
2.5% TFA	TFA (100%)	25µL	75µL
	Total	1mL	3mL

*If reagents will be consumed within one week of dissolution, Buffer B and Elution Buffer 2 may be prepared by diluting the 90% lactic acid and pyrrolidine, respectively, in the provided bottles. [§]Lactic acid is viscous. Aspirate slowly or use a wide-bore tip.

[†]Ammonium hydroxide solutions are generally supplied at $\sim 30\%$ (w/v).

C. Column Preparation

- 1. Place a Centrifuge Column Adaptor in a collection tube and insert a TiO₂ Spin Tip into the adaptor. Note that the Centrifuge Column Adaptors are reusable.
- 2. Add 20μ L of Buffer A and centrifuge at $3000 \times g$ for 2 minutes. Discard the flow-through.
- 3. Add 20μ L of Buffer B and centrifuge at $3000 \times g$ for 2 minutes. Discard the flow-through.

D. Phosphopeptide Binding

- 1. Suspend peptide sample in 150µL of Buffer B and apply to the spin tip. Centrifuge at $1000 \times g$ for 10 minutes.
- 2. Reapply sample to the spin tip and centrifuge at $1000 \times g$ for 10 minutes. If desired, retain the flow-through for analysis.
- 3. Wash column by adding 20μ L of Buffer B. Centrifuge at $3000 \times g$ for 2 minutes.
- 4. Wash column by adding 20μ L of Buffer A. Centrifuge at $3000 \times g$ for 2 minutes. Repeat this wash step twice.

E. Elution

- 1. Place the spin tip in new collection tube and add 50μ L of Elution Buffer 1. Centrifuge at $1000 \times g$ for 5 minutes.
- 2. Using same collection tube, add 50µL of Elution Buffer 2 to the spin tip. Centrifuge at $1000 \times g$ for 5 minutes.
- 3. Acidify the elution fraction by adding 100μL of 2.5% TFA. Ensure the sample pH is 2.0-2.5 for proper binding and desalting on C18 or graphite resins.

Note: Process the eluted sample with the Pierce Graphite Spin Columns before MS analysis.

Procedure for Graphite Clean-up of Phosphopeptides

A. Additional Materials Required

Note: TFA solutions can be prepared from the 100% TFA provided with the kit.

- 100% Acetonitrile (100µL per sample)
- 1.0% TFA (600µL per sample)
- 0.1% TFA ($20\mu L$ per sample)
- 1M NH₄OH (200µL per sample)
- 0.1% Formic acid in 50% acetonitrile (400µL per sample)
- 1.5mL Microcentrifuge tubes

B. Column Preparation

- 1. Remove top and bottom cap from a graphite spin column. Place column into a 1.5mL tube and centrifuge at $2000 \times g$ for 1 minute to remove the storage buffer.
- 2. Add 100μ L of 1M NH₄OH and centrifuge at $2000 \times g$ for 1 minute. Discard the flow-through. Repeat this step once.
- 3. Activate graphite by adding 100 μ L of acetonitrile. Centrifuge at 2000 × g for 1 minute and discard the flow-through.
- 4. Add 100μ L of 1% TFA and centrifuge at $2000 \times g$ for 1 minute. Discard the flow-through. Repeat this step once.

C. Sample Binding and Elution

- 1. Place column into a new collection tube and apply sample on top of the resin bed. Allow binding for 10 minutes with periodic vortex mixing.
- 2. Centrifuge at $1000 \times g$ for 3 minutes. Discard the flow-through.
- 3. Place column into a new collection tube. Wash column by adding 200μ L of 1.0% TFA and centrifuging at $2000 \times g$ for 1 minute. Discard the flow-through. Repeat this step once.
- 4. Place column into new collection tube. Add 100μ L of 0.1% formic acid in 50% acetonitrile to elute sample. Centrifuge at $2000 \times g$ for 1 minute. Repeat this step three more times using the same collection tube for a total elution volume of 400μ L.

Optional: To reduce final volume, elute with 100μ L of 0.1% formic acid in 50% acetonitrile. Re-apply eluate three more times for a total elution volume of 100μ L.

5. Gently dry sample in a vacuum evaporator. For MALDI-MS analysis, carefully suspend sample in 1-2µL of matrix solution prepared just before use. For LC-ESI applications, suspend sample in 20µL of 0.1% TFA or an appropriate buffer.

Problem	Possible Cause	Solution
Nonspecific peptide binding	Sample or Buffer B was at pH > 3.5	Make sure pH is < 3.5 by increasing the TFA concentration
	Wash volume was insufficient for the peptide concentration	Increase the number or volume of washes
	Nonspecific peptide is highly acidic	Increase TFA concentration or add 100mM NaCl to Buffer B or increase the number of washes
	Nonspecific peptide is highly hydrophobic	Increase amount of acetonitrile in Buffer B to 80%
No phosphopeptide recovered	Phosphopeptide concentration was too low	Increase amount of sample added or reduce elution buffer volume
	Poor MS sample quality	Desalt enriched samples before MS analysis
	Sample was overly buffered and pH remains > 5.5	Lower pH to < 3.0 by adding TFA
	High levels of interfering agents such as EDTA, free metals or ammonium bicarbonate were in the sample	Desalt enriched samples before MS analysis

Troubleshooting for Phosphopeptide Enrichment

Troubleshooting for Phosphopeptide Clean-Up

Problem	Possible Cause	Solution
Poor or incomplete sample	High pH and lack of ion-pairing agents	Add TFA to sample before binding
binding	Lack of mixing during binding period	Ensure that graphite is well suspended in sample during binding
Poor or incomplete sample recovery	Peptides bound to plastics, which caused significant peptide loss	Minimize contact with plastics, excessive drying and storage at low concentration
	Detection limits of the specific application	Ensure sample is within the detection limit of the application – limits vary considerably based on the application and instrumentation
Graphite material is present in the flow-through or washes	A detergent or detergent-like compound was in the sample	Remove detergent from the protein or peptide sample with detergent-removal columns (Product No. 87777) before desalting or remove detergent from protein sample by acetone precipitation before digestion

Related Thermo Scientific Products

88300	Pierce Fe-NTA Phosphopeptide Enrichment Kit
90003	Pierce Phosphoprotein Enrichment Kit
88811	Pierce Magnetic Titanium Dioxide Phosphopeptide Enrichment Kit
87777	Pierce Detergent Removal Spin Column, 0.5mL, 25 columns
88302	Pierce Graphite Spin Columns, 30 columns
87782	Pierce C18 Tips, 10µL, 96 tips
87784	Pierce C18 Tips, 100µL, 96 tips
89870	Pierce C18 Spin Columns, 25 columns

Cited Reference

1. Villén, J. and Gygi, S.P. (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. *Nat Protoc* **3(10)**:1630-8.

General References

- Larsen M.R., *et al.* (2005). Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. *Mol Cell Proteomics* **4(7)**:873-86.
- Kyono, Y., *et al.* (2008). Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res 7(10):4585-93.
- Carrascal, M., *et al.* (2008). Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment. *J Proteome Res* **7**(**12**):5167-76.
- Larsen, M.R., *et al.* (2004). Improved detection of hydrophilic phosphopeptides using graphite powder microcolumns and mass spectrometry: evidence for *in vivo* doubly phosphorylated dynamin I and dynamin III. *Mol Cell Proteomics* **3:**456-65.
- Products are warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Product documentation, specifications and/or accompanying package inserts ("Documentation"). No claim of suitability for use in applications regulated by FDA is made. The warranty provided herein is valid only when used by properly trained individuals. Unless otherwise stated in the Documentation, this warranty is limited to one year from date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than Buyer. Any model or sample furnished to Buyer is merely illustrative of the general type and quality of goods and does not represent that any Product will conform to such model or sample.

NO OTHER WARRANTIES, EXPRESS OR IMPLIED, ARE GRANTED, INCLUDING WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON INFRINGEMENT. BUYER'S EXCLUSIVE REMEDY FOR NON-CONFORMING PRODUCTS DURING THE WARRANTY PERIOD IS LIMITED TO REPAIR, REPLACEMENT OF OR REFUND FOR THE NON-CONFORMING PRODUCT(S) AT SELLER'S SOLE OPTION. THERE IS NO OBLIGATION TO REPAIR, REPLACE OR REFUND FOR PRODUCTS AS THE RESULT OF (I) ACCIDENT, DISASTER OR EVENT OF FORCE MAJEURE, (II) MISUSE, FAULT OR NEGLIGENCE OF OR BY BUYER, (III) USE OF THE PRODUCTS IN A MANNER FOR WHICH THEY WERE NOT DESIGNED, OR (IV) IMPROPER STORAGE AND HANDLING OF THE PRODUCTS.

Unless otherwise expressly stated on the Product or in the documentation accompanying the Product, the Product is intended for research only and is not to be used for any other purpose, including without limitation, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses, or any type of consumption by or application to humans or animals.

Current product instructions are available at <u>www.thermoscientific.com/pierce</u>. For a faxed copy, call 800-874-3723 or contact your local distributor. © 2014 Thermo Fisher Scientific Inc. All rights reserved. Unless otherwise indicated, all trademarks are property of Thermo Fisher Scientific Inc. and its subsidiaries. Printed in the USA.