TaqMan® Reverse Transcription Reagents

•	

Package **Contents**

Catalog Number N8080234

Size 200 rxns

4304134 (10-pack)

2000 rxns

Storage Conditions

- Store all contents at -20°C.
- Reverse Transcriptase and RNase Inhibitor are sensitive to air oxidation.
- Protect the fluorescent-dye labeled probe from light.

Required **Materials**

- Template: RNA
- Reverse gene-specific primers
- Additional Materials
- DEPC-treated water (Cat. no. AM9916)
- Optional: 1 M DTT (Cat. no. P2325)

Timing

Varies depending on primer used.

Selection Guides

Go online to view related products.

PCR Enzymes and Master Mixes RT Enzymes and Kits

Real-Time PCR Instruments

Real-Time PCR Master Mixes

- TagMan[®] Reverse Transcription Reagents are designed for reverse transcription (RT) and polymerase chain reaction (PCR) amplification of a specific target RNA from either total RNA or mRNA. The reagents in this kit facilitate twostep RT-PCR.

Product **Description**

- Two-step RT-PCR is performed in two separate reactions, useful when detecting multiple transcripts from a single cDNA reaction, or when storing a portion of the cDNA.
- TaqMan® Reverse Transcription Reagents contains MultiScribe™ Reverse Transcriptase and all other components needed for an RT set-up for 1st strand synthesis.
- MultiScribeTM Reverse Transcriptase is a recombinant Murine Leukemia Virus reverse transcriptase (MuLV RT).

Important Guidelines

- Take precautions to avoid cross-contamination by using aerosol-resistant barrier tips and analyzing PCR products in a separate area from PCR assembly.
- Dilute the 1M DTT stock to 100 mM in water prior to use in the RT reaction.

Online Resources

Visit our product page for additional information and protocols. For support, visit www.lifetechnologies.com/support.

Recombinant MuLV RT

RT Reaction Setup

Use the measurements below to prepare your RT reaction, or enter your own parameters in the column provided.

Component	20-µL rxn Custom		tom	Final Conc.	
DEPC-treated water	to 20 µL	to	μL	_	
10X RT Buffer	2.0 μL		μL	1X	
25 mM MgCl ₂	1.4 μL		μL	1.75 mM	
10 mM dNTP mix (2.5 mM each)	4.0 µL		μL	0.5 mM each	
100 mM DTT* (optional)	1.0 µL		μL	5 mM	
RNase Inhibitor (20 U/µL)	1.0 µL		μL	1.0 U/µL	
MultiScribe™ RT (50 U/μL)	1.0 µL		μL	2.5 U/μL	
50 μM Oligo d(T) ₁₆ , or 50 μM Random hexamers, or 10 μM gene-specific reverse primer	1.0 μL 1.0 μL 1.0 μL		μL	2.5 μM 2.5 μM 0.5 μM	
Template RNA	varies		μL	<1 μg/rxn	

^{*} Dilute the 1 M DTT stock to 100 mM in water prior to using in your RT reaction.

RT, PCR, and qPCR Protocols

i View the procedures for preparing and running your RT, PCR, and qPCR experiments starting on page 2.

Optimization Strategies

Refer to the pop-ups below for guidelines to optimize your RT, PCR, and qPCR reactions.

RNA Sample Prep

RT Guidelines

PCR Guidelines

n qPCR Guidelines

1 Limited Warranty, Disclaimer, and Licensing Information

applied

life technologies

biosystems

For Research Use Only. Not for use in diagnostic procedures.

TaqMan® Reverse Transcription Reagents

The example RT procedure below shows reagent volumes for a single **20-µL** reaction. For multiple reactions, prepare a master mix of components common to all reactions to minimize pipetting error, and then dispense appropriate volumes into each 0.2–0.5 mL PCR reaction tube prior to adding template RNA and primers. cDNA generated with this protocol will be used to perform subsequent PCR or qPCR.

used to perform subsequent Po		
<u>^</u>	Steps	
1	Thaw reagents	Keep the enzymes in a Thaw all reagents and
2	Prepare RT master mix	Combine the followin Note: Consider the vowater required to reach Note: The reaction vowefficiently convert a management of the composition of t
		two cycling steps (hig For random hexamers Comp
3	Add template RNA and primers	50 μM Oligo d(T) ₁₆ , or 50 μM random hexam 10 μM reverse gene-s ₁
	P rimore	Template RNA
		Cap each tube, mix, a
		Follow the recommen
4	Incubate reactions in a thermal cycler	Primer Type Oligo d(T) ₁₆ or gene-specific prim
		Random hexame

D	roc	adu	Iro	\Box	i a il	6
		-1010				

Keep the enzymes in a freezer until immediately prior to use.

Thaw all reagents and keep them on ice. Mix and briefly centrifuge the components.

Combine the following components in each reaction tube.

Note: Consider the volumes for all components listed in steps 2 and 3 to determine the correct amount of water required to reach your final reaction volume.

Note: The reaction volume for the RT step can be varied from 10 to 100 μ L. A 100- μ L RT reaction will efficiently convert a maximum of 2.0 μ g total RNA to cDNA.

Component	20-μL rxn	Final Concentration
DEPC-treated water	to 20 µL	_
10X RT Buffer	2.0 µL	1X
25 mM MgCl ₂	1.4 µL	1.75 mM
10 mM dNTP mix (2.5 mM each)	4.0 μL	0.5 mM each
100 mM DTT	1.0 µL	5.0 mM
RNase Inhibitor (20 U/μL)	1.0 µL	1.0 U/μL
MultiScribe™ RT (50 U/μL)	1.0 µL	2.5 U/μL

Cap, mix, and briefly centrifuge the components.

Note: If using oligo $d(T)_{16}$ or reverse gene specific primers, incubate RNA and primer following the first two cycling steps (highlighted below), then add master mix and continue with the next three cycling steps. For random hexamers, combine master mix, primer, and RNA, and then cycle as noted below.

Component	20-μL rxn	Final Concentration
50 μM Oligo d(T) ₁₆ , or	1.0 µL	2.5 μΜ
50 μM random hexamers, or	1.0 µL	2.5 µM
10 μM reverse gene-specific primer	1.0 µL	0.5 μΜ
Template RNA	varies	< 1 µg

Cap each tube, mix, and then briefly centrifuge the contents.

Follow the recommended cycling parameters based on your selected primer type for this experiment.

Primer Type	Temperature	Time
	65°C	5 minutes
Oligo d(T) or	4°C	2 minutes
Oligo d(T) ₁₆ or gene-specific primers	37°C	30 minutes
gene speeme primers	95°C	5 minutes
	4°C	indefinitely
	25°C	10 minutes
Random hexamers	37°C	30 minutes
Random nexamers	95°C	5 minutes
	4°C	indefinitely

Use your RT reaction immediately for down-stream applications, or store it at -20°C.

PCR Protocol

The example PCR procedure below shows reagent volumes for a single **50-μL** reaction using AmpliTaq[®] DNA Polymerase with Buffer I, as well as the cDNA generated by following the RT protocol on page 2. For other DNA Polymerases, refer to their respective manufacturers' guidelines. For multiple reactions, prepare a master mix of components common to all reactions to minimize pipetting error, and then dispense appropriate volumes into each 0.2–0.5 mL PCR reaction tube prior to adding primers and template cDNA.

		Steps			Pı	rocedure Details		
1		Thaw reagents	Thaw, mix, and briefly centrifuge each component before use. Keep components on ice.					
			Note: Conside	wing components t er the volumes for a d to reach your fina	all componer	nts listed in steps 2 and 3 to o	determine the correct amount of	
				Component		50-μL rxn	Final Concentration	
		Danas DOD assets a seise	Autoclaved, d	listilled water		to 50 μL	_	
2		Prepare PCR master mix	10X PCR Buff	er I*		5.0 µL	1X	
			10 mM dNTP	mix (2.5 mM each)		1.0 µL	0.2 mM	
			AmpliTaq® D	NA Polymerase (5	U/uL)	0.25 μL	0.025 U/μL	
			* Buffer I cont	tains MgCl ₂ .				
			Mix and brief	ly centrifuge the co	mponents.			
			Add your pri	Add your primers and template cDNA to each tube for a final reaction volume of 50 μ L.				
	8			Component		50-μL rxn	Final Concentration	
	8	Add RT reaction cDNA	10 μM forward primer			1.0 µL	0.2 μΜ	
3		and primers	10 μM reverse primer			1.0 µL	0.2 μΜ	
			RT reaction cDNA			varies	< 500 ng/rxn*	
			Cap each tube, mix, and then briefly centrifuge the contents.					
				Note: You can use two-step cycling (skipping the anneal step) when the primer T_m is > 50 °C.				
				Step	Temperature		Time	
			Initial denaturation		95°C		2 minutes	
4	+ • 7	Incubate reactions in a	35 PCR	Denature	95°C		15 seconds	
	$\overline{\ }$	thermal cycler	cycles	Anneal	~55°C (depending on primer T _m)		30 seconds	
			,	Extend	72°C		1 minute/kb	
			Final extension		72°C		5 minutes	
			I	Hold		4°C	indefinitely	
5	The state of the s	Analyze with gel electrophoresis	·	L using agarose gel R reaction immedia	•	sis. n-stream applications, or stor	re it at –20°C.	

qPCR Protocol

The example PCR procedure below shows reagent volumes for a single 10-µL reaction, using EXPRESS qPCR Supermix, Universal, as well as cDNA generated by following the RT protocol on page 2. For other pPCR mixes, refer to their respective manufacturers' guidelines.

For multiple reactions, prepare a master mix of components common to all reactions to minimize pipetting error, and then dispense appropriate volumes into each 0.2–0.5 mL PCR reaction tube, or well of a MicroAmp® EnduraPlateTM Optical 96- or 384-well plate, prior to adding template DNA and primers.

		Steps			Procedure Details	
1		Thaw reagents	Thaw reagents. For 384-well plates, we recommend a maximum reaction volume of 10 µL per well. Note: Always prepare no-template control (NTC) reactions to test for DNA contamination of the enzyme/primer mixes.			
			Component		10-μL rxn	Final Concentration
			Autoclaved,	distilled water	to 10 µL	_
		Prepare qPCR master mix	EXPRESS qF	CR Supermix, Universa	l 5.0 μL	1X
2			20X Fluorescent Primer/Probe Mix		0.5 μL	1X
			ROX Reference Dye (25 μM)		0.2 μL	0.5 μΜ
			RT reaction cDNA		2.0 µL	varies
			Cap or seal each PCR tube/plate, gently mix, and centrifuge contents.			
		Incubate reactions in a real- time instrument		Step	Temperature	Time
			Pre-incubation		95°C	10 minutes
3			40 1	A 1: C: (:	95°C	15 seconds
	7		40 cycles	Amplification —	60°C	1 minutes
4	A STATE OF THE STA	Collect and analyze data	Analyze results following your Real-Time instrument manufacturer's guidelines. Optional: The specificity of the PCR products can be checked by agarose gel electrophoresis.			