Anza[™] Restriction Enzyme Cloning System

Publication Number MAN0014593

Revision A.0

For Research Use Only. Not for use in diagnostic procedures.

Information in this document is subject to change without notice.

DISCLAIMER

TO THE EXTENT ALLOWED BY LAW, LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

IMPORTANT LICENSING INFORMATION

These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

TRADEMARKS

© 2015 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

Contents

Product Information	4
Anza [™] Restriction Enzyme Cloning System Workflow	5
Methods	9
Anza [™] Restriction Enzyme digestion protocol	9
Anza [™] Alkaline Phosphatase dephosphorylation protocols	10
One step dephosphorylation protocol	10
Two step/heat dephosphorylation protocol	11
Two step/column dephosphorylation protocol	11
Anza [™] T4 PNK 5' Phosphorylation Protocol	12
Anza [™] DNA Blunt End Protocol	13
Anza [™] DNA End Repair Protocol	14
Anza [™] T4 DNA Ligase Master Mix	15
Appendix A: Description of symbols	16
Appendix B: Additional bases required for complete digestion	17
Appendix C: Restriction enzymes with compatible overhangs	19
Appendix D: Types of DNA end repair	21
Appendix E	22
Ordering information	22
Technical Support	23

Product Information

Anza™ restriction enzyme cloning system	The Invitrogen [™] Anza [™] Restriction Enzyme Cloning System is a complete cloning system centered around a proprietary buffer system. The Anza [™] buffer is formulated to minimize the need to accommodate the variable conditions that are required for optimal function of individual restriction enzymes, thus creating a unified system to simplify the restriction enzyme cloning process. All Anza [™] restriction enzymes are fully functional in the Anza [™] buffer. The Anza [™] cloning system also includes Anza [™] Alkaline Phosphatase, the Anza [™] T4 PNK (polynucleotide kinase) Kit, the Anza [™] DNA Blunt End Kit, the Anza [™] DNA End Repair Kit, and the Anza [™] T4 DNA Ligase Master Mix.
Anza™ Restriction Enzymes	The Anza [™] cloning system utilizes a single protocol for digestion of all DNA, simplifying the overall procedure. Anza [™] restriction enzymes require no more than 15 minutes for complete digestion of any DNA substrate, but also permit flexibility for prolonged digestion up to 16 hours without deleterious star activity effects.
Anza™ Alkaline Phosphatase	Anza [™] Alkaline Phosphatase is used for removing the 5'-phosphate at the ends of DNA fragments. Dephosphorylation is performed prior to 5' end-labeling of DNA or RNA fragments prior to transfer of a labeled gamma-phosphate from ATP to that position. In cloning, dephosphorylation prevents a vector from recircularizing as the ligase enzyme requires both a 5'-phosphate and a 3'-hydroxyl group to join the two ends of the vector.
Anza™ T4 PNK Kit	The Anza [™] T4 PNK (polynucleotide kinase) Kit is used to perform 5'-phosphorylation of DNA and oligonucleotides. The T4 PNK enzyme catalyzes the transfer of the terminal phosphate of ATP to a 5'-hydroxyl group of a nucleic acid. It also exhibits 5' polynucleotide kinase, and 3'-phosphatase activity.
Anza™ DNA Blunt End Kit	The Anza [™] DNA Blunt End Kit is used to convert DNA with overhanging ends to blunt ended DNA for blunt end ligation. The Anza [™] DNA Blunting Enzyme Mix contains T4 DNA polymerase and Klenow Fragment. The 3'→5' exonuclease activity of T4 DNA polymerase acts to remove 3' overhangs, while the 5'→3' polymerase activity of the enzymes act to fill in 5' overhangs. See Appendix D, page 21 for additional information on types of end repair. The Anza [™] 10X Blunting Buffer contains dNTPs to facilitate the synthesis of blunt ends.
Anza™ DNA End Repair Kit	The Anza [™] DNA End Repair Kit is used to convert DNA with overhanging ends to blunt ended DNA, while also performing 5′-phosphorylation, for blunt end ligation. The Anza [™] DNA End Repair Mix contains T4 DNA polymerase, Klenow Fragment, and T4 PNK. See Appendix D, page 21 for additional information on types of end repair. The Anza [™] 10X End Repair Buffer contains ATP and dNTPs to facilitate the activity of the enzyme mix.
Anza™ T4 DNA Ligase Master Mix	The Anza [™] T4 DNA Ligase Master Mix is part of the overall Anza [™] Restriction Enzyme Cloning System. The T4 DNA Ligase enzyme is formulated as a 4X concentrated master mix minimizing pipetting and facilitating ease of use. Anza [™] T4 DNA Ligase Master Mix can be used to join DNA fragments with overhanging ends or blunt ends, and repair nicks in double-stranded DNA having 3'-hydroxyl and 5'-phosphate ends.

Anza[™] Restriction Enzyme Cloning System Workflow

Recombinant DNA technology Traditional cloning is a recombinant DNA technique in which a vector and insert DNA are digested with restriction enzymes and joined by DNA ligase to form a new vector. A general workflow of traditional cloning includes the following steps:

1	Vector preparation (page 6)	
2	Insert preparation (page 7)	5' <mark>P</mark> 3' 3' 5'
3	Ligation (page 7)	
4	Transformation (page 8)	+ Competent Cell
5	Colony screening (page 8)	

Vector preparation

- Select a cloning vector with the desired restriction sites in the multiple cloning site (MCS).
- Digest the cloning vector with the appropriate restriction enzyme(s) to produce ends that are complementary to the insert. If necessary, modify the vector to create blunt ends compatible with blunt ended inserts.
- The option to select two restriction sites allows directional cloning of an insert, whereas using a single restriction site will result in inserts that can be in forward or reverse orientation.
- Directional cloning can be performed using two different restriction enzymes to generate non-compatible overhanging ends that allow the insert to be ligated in a specific orientation.
- Dephosphorylate blunt or self-compatible vector ends to prevent self-ligation. Dephosphorylation of the vector is important to reduce background and favor insertion of the desired fragment into the vector.

Insert preparation

Considerations when preparing an insert for cloning:

- If using PCR to amplify an insert that does not contain the desired restriction sites, design PCR primers that incorporate the desired restriction sites in the appropriate location.
- Directional cloning can be performed using two different restriction enzymes to generate non-compatible overhanging ends that allow the insert to be ligated in a specific orientation.
- Digest PCR amplicon with appropriate Anza[™] Restriction Enzyme(s) to produce fragments with phosphorylated ends complementary to vector.
- Phosphorylate amplicons from PCR reactions that do not require the ends to be digested. Reactions are typically performed with non-phosphorylated primers, resulting in in amplicons with non-phosphorylated 5' ends.
- If cloning an insert with ends that have overhangs into a vector with blunt ends, blunt the ends of the insert.
- Isolate inserts that are digested from a vector by gel electrophoresis and purify the fragment using a gel purification kit.

Ligation

- Ligate the dephosphorylated DNA vector with the DNA insert.
 - Set up multiple reactions with varying insert to vector molar ratios (in the range of 1:1 to 5:1). Use the **CloningBench app** at **thermofisher.com/cloningbench** as a convenient tool to calculate ratios.
- The Anza[™] T4 DNA Ligase Master Mix includes polyethylene glycol (PEG) to improve efficiency of blunt end ligation, because blunt end ligation can be less efficient than ligation of fragments with overhanging ends.

Transformation	 Transform vector into competent cells to propagate cloned DNA. The ligation mixture can be used directly in transformation of chemically competent cells, or may require purification prior to transformation of electrocompetent cells. If a <i>dam</i> or <i>dcm</i> methylation-sensitive restriction enzyme to be used for downstream applications, transform the vector into INV110 Chemically Competent <i>E. coli</i>. Refer to the instruction manual of the competent cells being used to propagate your vector for details on how to perform the transformation protocol.
Colony screening	 Determine the presence of colonies that carry your construct. All colonies that grow under antibiotic selection carry the vector, but not all of them will have the insert. Use the selection markers on your cloning vector to identify bacteria colonies which contain your construct (e.g. blue/white screening of β-galactodiase activity). Perform restriction enzyme digestion to determine the presence of your insert. Select the appropriate restriction enzymes to produce fragments that will indicate presence of the insert, and orientation.
	 Note: Samples digested in Anza[™] buffer need to be treated as high salt samples when used with E-gel[™] agarose gels. Dilute the sample 2- to 5-fold with deionized water or TE before loading onto E-gel[™] Agarose Gels, or at least 15-fold if with deionized water before loading onto E-gel[™] EX Agarose Gels. Perform colony PCR to identify colonies which carry your insert. Primer pairs can be designed to identify the presence of the insert, and the orientation.

 $\circ \quad \mbox{Perform DNA sequencing to identify the orientation of your insert.}$

Anza™ Restriction Enzyme digestion protocol

General guidelines	Prepare vectors and inserts for cloning by restriction digestion. The choice of restriction enzymes depends upon the presence and location of compatible sequences on the vector and the insert. Anza [™] restriction enzymes require no more than 15 minutes for complete digestion of any DNA substrate. The Anza buffer also permits flexibility for prolonged digestions, up to 16 hours, without the deleterious star activity effects, when using 1 µL of restriction enzyme or enzymes in a digestion reaction following the Anza [™] digestion protocol.			
Unit definition	One unit is the amount of enzyme required to completely digest 1 μ g of substrate DNA in 50 μ L of the reaction mixture in 1 hour at 37°C.			
Anza™ 10X Red Buffer	Anza [™] 10X Red Buffer includes a density reagent containing red and yellow tracking dyes. The density reagent allows the reaction mixture to be loaded directly onto a gel for electrophoresis. The red dye of the Anza [™] 10X Red Buffer migrates with 800 bp DNA fragments in a 1% agarose gel, while the yellow dye migrates significantly faster than 10 bp DNA fragments in a 1% agarose gel.			
Anza™ 10X Buffer	Use Anza [™] 10X Buffer for applications that require analysis by fluorescence excitation, as the dyes in the Anza [™] 10X Red Buffer may interfere with some fluorescence measurements. Add 1/10 volume of 10X Loading Buffer to samples digested in Anza [™] Buffer before performing electrophoresis.			
Digestion 1. Prepare a reaction mix by adding reagents in the order indicated in Table 1.				
protocol	Reagent	1 enzyme reaction	2 enzyme reaction	3 enzyme reaction
	Nuclease-Free Water	As required to	make up final re	action volume
	Anza [™] 10X Buffer or Anza 10X Red Buffer	2 µL	2 µL	3 µL
	DNA	0.2–1 µg	0.2–1 µg	0.2–1 µg
	Anza [™] restriction enzyme 1	1 µL	1 µL	1 µL
	Anza [™] restriction enzyme 2	—	1 µL	1 µL
	Anza [™] restriction enzyme 3	_	_	1 µL
	Final reaction volume	20 µL	20 µL	30 µL
	Volumes can be scaled up linearly to 5X.			

volumes can be scaled up intearry to 57

2. Incubate at 37° C for 15 minutes.

Anza[™] Alkaline Phosphatase dephosphorylation protocols

General guidelines	Anza [™] Alkaline Phosphatase is used to perform dephosphorylation of DNA ends on cloning vectors prior to insert ligation. Dephosphorylation of blunt or self-compatible vector ends is recommended to prevent self-ligation, which results in high background when screening for clones containing the insert.
	• Plasmid DNA should be free of RNA and genomic DNA for efficient dephosphorylation.
	• The enzyme can be heat inactivated at 80°C in 5 minutes, eliminating the need for purification prior to ligation.
	• The one step protocol is used to perform simultaneous digestion and dephosphorylation reactions.
	• If the Anza [™] restriction enzyme is incompatible with the one step protocol, use a two step protocol by performing restriction digestion prior to dephosphorylation.
Anza™ 10X Red Buffer	Anza [™] 10X Red Buffer includes a density reagent containing red and yellow tracking dyes. The density reagent allows the reaction mixture to be loaded directly onto a gel for electrophoresis. The red dye of the Anza [™] 10X Red Buffer migrates with 800 bp DNA fragments in a 1% agarose gel, while the yellow dye migrates significantly faster than 10 bp DNA fragments in a 1% agarose gel.
Anza™ 10X Buffer	Use Anza [™] 10X Buffer for applications that require analysis by fluorescence excitation, as the dyes in the Anza [™] 10X Red Buffer may interfere with some fluorescence measurements. Add 1/10 volume of 10X Loading Buffer to samples digested in Anza [™] Buffer before performing electrophoresis.
[X AP]	One step dephosphorylation protocol
	The one step protocol is used to perform simultaneous digestion and dephosphorylation reactions. Refer to the product insert for the restriction enzyme used in the reaction or the Anza Enzyme Finder Tool at thermofisher.com/anzafinder to determine compatibility with the one step protocol.

1. Prepare a reaction mix by adding the reagents listed in the following table to a clean microcentrifuge tube:

Reagent	Volume
Nuclease-free water	As required to reach final reaction
	volume
plasmid DNA	0.2–1 µg
Anza™ 10X Buffer or	21
Anza 10X Red Buffer	2 με
Anza™ Restriction Enzyme	1 µL
Anza™ Alkaline Phosphatase	1 µL
Final reaction volume	20 µL

- 2. Mix reagents by pipetting up and down.
- 3. Incubate at 37°C for 15 minutes.
- 4. Heat inactivate enzymes by incubating at 80°C for 20 minutes.
- 5. Ligate insert and vector using the Anza[™] T4 DNA Ligase Master Mix.
- 6. Use $1-5 \mu$ L of the ligation reaction mixture to transform competent cells.

Two step/heat dephosphorylation protocol

The two step/heat protocol is used to perform sequential digestion and dephosphorylation reactions. Refer to the product insert for the restriction enzyme used in the reaction or the Anza Enzyme Finder Tool at **thermofisher.com/anzafinder** to determine compatibility with the two step/heat protocol.

- 1. Perform restriction digestion reaction, and heat inactivate restriction enzyme.
- 2. Prepare a reaction mix by adding the reagents listed in the following table to a clean microcentrifuge tube:

Reagent	Volume
Digested plasmid DNA (0.2–1 µg) (in 1x Anza Buffer)	19 µL
Anza™ Alkaline Phosphatase	1 µL
Final reaction volume	20 µL

- 3. Mix reagents by pipetting up and down.
- 4. Incubate at 37°C for 15 minutes.
- 5. Heat inactivate enzyme by incubating at 80°C for 20 minutes.
- 6. Ligate insert and vector using the Anza[™] T4 DNA Ligase Master Mix.
- 7. Use $1-5 \mu$ L of the ligation reaction mixture to transform competent cells.

Two step/column dephosphorylation protocol

The two step/column protocol is used to perform sequential digestion and dephosphorylation reactions. Refer to the product insert for the restriction enzyme used in the reaction or the Anza Enzyme Finder Tool at **thermofisher.com/anzafinder** to determine compatibility with the two step/column protocol.

- 1. Perform restriction digestion reaction, and column purify the insert.
- 2. Prepare a reaction mix by adding the reagents listed in the following table to a clean microcentrifuge tube:

Reagent	Volume
Column Purified digested plasmid DNA (0.2–1 µg)	17 µL
Anza 10X Buffer or Anza 10X Red Buffer	2 µL
Anza™ Alkaline Phosphatase	1 μL
Final reaction volume	20 µL

- 3. Mix reagents by pipetting up and down.
- 4. Incubate at 37°C for 15 minutes.
- 5. Heat inactivate enzyme by incubating at 80°C for 5 minutes.
- 6. Ligate insert and vector using the Anza[™] T4 DNA Ligase Master Mix.
- 7. Use $1-5 \mu$ L of the ligation reaction mixture to transform competent cells.

Anza™ T4 PNK 5' Phosphorylation Protocol

General The primers used in PCR amplification are usually non-phosphorylated, thereby resulting in PCR products that are not phosphorylated. Non-phosphorylated amplicons must be guidelines phosphorylated to allow ligation with a dephosphorylated vector to occur. The Anza[™] T4 PNK (polynucleotide kinase) Kit is used to perform 5'-phosphorylation of DNA and oligonucleotides. Perform protocol with linear double-stranded DNA (0.2–1 µg), or oligonucleotides (10–50 pmol). Phosphorylaton can be performed with DNA or oligonucleotides in water, TE, or 1X Anza[™] buffers. Prepare a reaction mix by adding the reagents listed in the following table to a clean 1. DNA microcentrifuge tube: phosphorylation protocol Volume Reagent Nuclease-free water As required to reach final reaction volume 0.2-1 µg DNA insert Anza™ 10X PNK Buffer 2 µL Anza[™] T4 PNK Enzyme 1μL Final reaction volume 20 µL

- 2. Mix reagents by pipetting up and down.
- 3. Incubate at 20°C for 15 minutes.
- 4. Heat inactivate enzyme by incubating at 80°C for 5 minutes.
- 5. Ligate insert and vector using the Anza[™] T4 DNA Ligase Master Mix.
- 6. Use 1–5 µL of the ligation reaction mixture to transform competent cells.

Anza™ DNA Blunt End Protocol

General
guidelinesThe Anza™ DNA Blunt End Kit is used to convert DNA with overhanging ends generated by
restriction enzyme digestion to blunt ended DNA for insertion into a dephosphorylated blunt
ended vector.

DNA blunting protocol

1. Prepare a reaction mix by adding the reagents listed in the following table to a clean microcentrifuge tube:

Reagent	Volume
Nuclease-free water	As required to reach final reaction
	volume
Anza™ 10X Blunting Buffer	2 µL
DNA insert	0.2–1 µg
Anza™ DNA Blunting Enzyme Mix	1 μL
Final reaction volume	20 µL

- 2. Mix reagents by pipetting up and down.
- 3. Incubate at 20°C for 15 minutes.
- 4. Purify DNA insert from reaction mix using the PureLink[™] PCR Purification Kit.
- 5. Ligate insert and vector (dephosphorylated and blunt ended) using the Anza[™] T4 DNA Ligase Master Mix.
- 6. Use $1-5 \mu$ L of the ligation reaction mixture to transform competent cells.

Anza™ DNA End Repair Protocol

General
guidelinesThe Anza™ DNA End Repair Kit is used to convert non-phosphorylated DNA with overhanging
ends (e.g. PCR products with a 3' adenine residue added by *taq* polymerase) to blunt ended 5'-
phosphorylated DNA for blunt end ligation.

- PCR products require clean up prior to performing the end repair protocol.
- DNA digested with Anza[™] Restriction Enzymes can be used directly in the protocol following heat inactivation.

DNA end Use this protocol to convert DNA with 3' and 5' overhangs to blunt-ended DNA for use in cloning.

1. Prepare a reaction mix by adding the reagents listed in the following table to a clean microcentrifuge tube:

Reagent	Volume
Nuclease-free water	As required to reach final reaction
	volume
Anza™ 10X End Repair Buffer	2 µL
DNA insert	0.2–1 µg
Anza™ DNA End Repair Mix	1 μL
Final reaction volume	20 µL

- 2. Mix reagents by pipetting up and down.
- 3. Incubate at 20°C for 15 minutes.
- 4. Purify DNA insert from reaction mix using the PureLink[™] PCR Purification Kit.
- 5. Ligate purified insert and vector using the Anza[™] T4 DNA Ligase Master Mix.
- 6. Use 1–5 µL of the ligation reaction mixture to transform competent cells.

Anza™ T4 DNA Ligase Master Mix

The Anza[™] T4 DNA Ligase Master Mix is used to perform 15-minute ligation of blunt-ended General DNA or DNA with overhanging ends into a vector for cloning. guidelines Ligation can be performed with either phosphorylated or dephosphorylated DNA insert. Note: if using a dephosphorylated DNA insert, the linearized vector needs to be phosphorylated. Ligation can be performed with DNA in water, TE, elution buffer, or 1X Anza[™] buffers. If using electrocompetent cells, perform column purification of ligated DNA prior to • transformation. **DNA** ligation 1. Prepare a reaction mix by adding the reagents listed in the following table to a clean microcentrifuge tube: protocol Reagent Volume Nuclease-free water As required to reach final reaction volume Linearized vector DNA 10-100 ng 3:1 molar excess over vector DNA **DNA** insert Anza[™] T4 DNA Ligase Master Mix 5μL **Final reaction volume** 20 µL

- 2. Mix reagents by pipetting up and down.
- 3. Incubate at room temperature for 15 minutes.
- 4. Use 1–5 µL of the ligation reaction mixture to transform competent cells.

Note: the ligation reaction mixture can be stored at 0–4°C until required for transformation.

Appendix A: Description of symbols

Overview

Explanations of the symbols used to describe the characteristics of Anza[™] enzymes are provided in the following table.

Symbol	Explanation
37° V 15′	Digestion reaction protocol Anza™ universal digestion protocol: Digestion is performed at 37°C for 15 minutes.
80° 20′	Heat inactivation Complete heat inactivation when heated to 80°C for 20 minutes.
	No Heat Inactivation Restriction enzyme is not heat sensitive and cannot be heat inactivated.
Methylation Ser	nsitivity
Dam	DNA cleavage by the restriction enzyme is <i>blocked or impaired</i> by Dam methylation within the target sequence.
Dcm	DNA cleavage by the restriction enzyme is <i>blocked or impaired</i> by Dcm methylation within the target sequence.
CpG	DNA cleavage by the restriction enzyme is <i>blocked or impaired</i> by CpG methylation within the target sequence.
Dam	The target site <i>may have</i> overlapping Dam methylation which will result in <i>blocked or impaired</i> DNA cleavage.
Dcm	The target site <i>may have</i> overlapping Dcm methylation which will result in <i>blocked or impaired</i> DNA cleavage.
CpG	The target site <i>may have</i> overlapping CpG methylation which will result in <i>blocked or impaired</i> DNA cleavage.
Alkaline Phosphatase Protocol	
X AP	One Step Digestion and dephosphorylation can be performed simultaneously in Anza™ buffer in a one-step process.
AP	Two Step/Heat Digestion reaction requires heat inactivation prior to dephosphorylation with Anza Alkaline Phosphatase.
AP	Two Step/Column Digestion reaction requires column purification prior to dephosphorylation with Anza Alkaline Phosphatase.
DTT	Dithiothreitol (DTT) is an additive required to obtain the stated enzyme activity.

Appendix B: Additional bases required for complete digestion

Overview

When designing PCR primers to produce amplicons with incorporated restriction sites, additional bases may be required in the regions flanking the restriction enzyme recognition site to allow complete digestion of the DNA fragment that is produced.

The following table is a list of Anza[™] Restriction Enzymes, and the required number of additional bases that need to be added to either side of the recognition site to achieve complete digestion.

Complete digestion was tested with 0.2 µg of PCR product in a 20 µL reaction, incubated at 37°C for 15 minutes.

Enzyme	Number of additional bases required for complete digestion	Enzyme	Number of additional bases required for complete digestion
Anza 1 Notl	2	Anza 33 Lgul	2
Anza 2 Ncol	3	Anza 34 Pfl23II	3
Anza 3 Bcul	1	Anza 35 Eco47III	4
Anza 4 Bpil	1	Anza 36 Eco31I	3
Anza 5 BamHI	2	Anza 37 Mph1103I	3
Anza 6 Nhel	5	Anza 38 Scal	4
Anza 7 BshTl	3	Anza 39 Bsp1407I	3
Anza 8 Xhol	4	Anza 40 SfaAl	6
Anza 9 Ndel	6	Anza 41 HpyF3I	3
Anza 10 Dpnl	1	Anza 42 Rsal	3
Anza 11 EcoRI	3	Anza 43 Eco105I	3
Anza 12 Xbal	2	Anza 44 Alul	4
Anza 13 Esp3l	3	Anza 45 Ptel	3
Anza 14 Sall	4	Anza 46 Aatll	5
Anza 15 XmaJI	2	Anza 47 Eco52I	4
Anza 16 HindIII	6	Anza 48 Mnll	2
Anza 17 Kpnl	3	Anza 49 Smil	2
Anza 18 Pacl	2	Anza 50 KspAl	2
Anza 19 BglII	4	Anza 51 BspTl	4
Anza 20 Sacl	2	Anza 52 Pvull	2
Anza 21 Sgsl	2	Anza 53 Aanl	5
Anza 22 Smal	1	Anza 54 Eco147I	3
Anza 23 Pstl	3	Anza 55 Mbol	1
Anza 24 Mssl	2	Anza 56 Hin1II	4
Anza 25 Pael	5	Anza 57 Bpu1102I	2
Anza 26 Eco32I	2	Anza 58 Pagl	3
Anza 27 Pvul	4	Anza 59 Hhal	1
Anza 28 Mlul	3	Anza 60 Kpn2l	3
Anza 29 Kfll	5	Anza 61 Pfol	3
Anza 30 Bsu15I	2	Anza 62 Mlsl	4
Anza 31 Munl	3	Anza 63 Cpol	1
Anza 32 Apal	3	Anza 64 SaqAl	4

	Number of additional		Number of additional
Enzyme	bases required for	Enzyme	bases required for
	complete digestion		complete digestion
Anza 65 Mspl	3	Anza 97 Bsp143I	4
Anza 66 BstXI	3	Anza 98 Xcel	2
Anza 67 Rrul	5	Anza 99 Xagl	2
Anza 68 BsuRI	3	Anza 100 Bsh1236I	1
Anza 69 Bgll	3	Anza 101 Boxl	3
Anza 70 Nsbl	3	Anza 102 Cail	4
Anza 71 Hinfl	2	Anza 103 Psp14061	3
Anza 72 Hincll	1	Anza 104 Mboll	2
Anza 73 Bcll	3	Anza 105 Hin1I	1
Anza 74 Csil	4	Anza 106 Van91I	3
Anza 75 Alw44I	4	Anza 107 BspLl	2
Anza 76 Vspl	2	Anza 108 Satl	3
Anza 77 Dral	4	Anza 109 Alw26I	1
Anza 78 Adel	2	Anza 111 Xapl	4
Anza 79 Pdil	3	Anza 112 BseGI	2
Anza 80 FspBl	3	Anza 113 Bcnl	3
Anza 81 Eco91I	2	Anza 114 Hpy8l	2
Anza 82 Eco72I	2	Anza 115 Mbil	3
Anza 83 Eco811	2	Anza 116 Cfr13I	2
Anza 84 FspAl	4	Anza 117 Eco01091	3
Anza 85 Mrel	3	Anza 118 BseDI	3
Anza 86 Pdml	2	Anza 119 Bmsl	1
Anza 87 Eco47I	1	Anza 120 NmuCl	2
Anza 88 Bsp119I	1	Anza 121 Bsp120I	3
Anza 89 Mva12691	3	Anza 122 Csp6l	2
Anza 90 Eco88I	2	Anza 123 Hin6l	4
Anza 91 Acc65l	3	Anza 124 Pfel	2
Anza 92 Ehel	3	Anza 125 HpyF10VI	2
Anza 93 Hpall	3	Anza 126 Alw21I	1
Anza 94 Bfml	2	Anza 127 Rsel	4
Anza 95 MauBl	5	Anza 128 PspFl	4
Anza 96 Xmil	3	Anza 129 BshNI	2

Appendix C: Restriction enzymes with compatible overhangs

Overview

To join two DNA fragments, the ends need to be compatible. The ends of the two fragments can be generated by digestion with a single enzyme resulting in compatible overhangs, creation of blunt ended fragments, or digestion by two different enzymes that produce compatible ends.

The following table is a list of Anza[™] Restriction Enzymes which can be used to generate DNA fragments with compatible overhanging ends.

Enzyme	Anza™ Restriction Enzymes resulting in compatible overhangs
Anza 1 Notl	Anza 47 Eco52I, Anza 121 Bsp120I
Anza 2 Ncol	Anza 58 Pagl
Anza 3 Bcul	Anza 6 Nhel, Anza 12 Xbal, Anza 15 XmaJl
Anza 5 BamHI	Anza 19 BglII, Anza 55 Mbol, Anza 73 BclI, Anza 97 Bsp143I
Anza 6 Nhel	Anza 3 Bcul, Anza 12 Xbal, Anza 15 XmaJl
Anza 7 BshTl	Anza 60 Kpn2I, Anza 85 Mrel, Anza 90 Eco88I* (*If recognized sequence is 5'-CCCGGG-3')
Anza 8 Xhol	Anza 14 Sall, Anza 90 Eco88I* (*if recognized sequence is 5'-CTCGAG-3')
Anza 9 Ndel	Anza 64 SaqAI, Anza 76 VspI, Anza 80 FspBI, Anza 122 Csp6I
Anza 11 EcoRI	Anza 31 Munl, Anza 111 Xapl
Anza 12 Xbal	Anza 3 Bcul, Anza 6 Nhel, Anza 15 XmaJl
Anza 14 Sall	Anza 8 Xhol, Anza 90 Eco88I* (*if recognized sequence is 5'-CTCGAG-3')
Anza15 XmaJl	Anza 3 Bcul, Anza 6 Nhel, Anza 12 Xbal
Anza 18 Pacl	Anza 27 Pvul, Anza 40 SfaAl
Anza 19 BglII	Anza 5 BamHI, Anza 55 Mbol, Anza 73 Bcll, Anza 97 Bsp143I
Anza 20 Sacl	Anza 126 Alw21I* (*if recognized sequence is 5'-GAGCTC-3')
Anza 21 Sgsl	Anza 28 Mlul, Anza 45 Ptel, Anza 95 MauBl
Anza 23 Pstl	Anza 37 Mph1103I, Anza 126 Alw21I* (*if recognized sequence is 5'-GTGCAC-3')
Anza 25 Pael	Anza 56 Hin1II, Anza 98 Xcel
Anza 27 Pvul	Anza 18 Pacl, Anza 40 SfaAl
Anza 28 Mlul	Anza 21 Sgsl, Anza 45 Ptel, Anza 95 MauBl
Anza 29 Kfll	Anza 63 Cpol, Anza 87 Eco47I
Anza 30 Bsu15I	Anza 65 Mspl, Anza 88 Bsp119I, Anza 93 Hpall, Anza 103 Psp1406I, Anza 105 Hin1I, Anza 123 Hin6I, Anza 96 Xmil* (*if recognized sequence is 5'-GTCGAC-3')
Anza 31 Munl	Anza 11 EcoRI, Anza 111 Xapl
Anza 34 Pfl23II	Anza 39 Bsp1407I, Anza 91 Acc65I, Anza 129 BshNI* (*if recognized sequence is 5'-GGTACC-3')
Anza 37 Mph1103I	Anza 23 Pstl, Anza 126 Alw21I* (*if recognized sequence is 5'-GTGCAC-3')
Anza 39 Bsp1407I	Anza 34 Pfl23II, Anza 91 Acc65I, Anza 129 BshNI* (*if recognized sequence is 5'-GGTACC-3')
Anza 40 SfaAl	Anza 18 Pacl, Anza 27 Pvul
Anza 45 Ptel	Anza 21 Sgsl, Anza 28 Mlul, Anza 95 MauBl
Anza 47 Eco52I	Anza 1 Notl, Anza 121 Bsp120I
Anza 55 Mbol	Anza 5 BamHI, Anza 19 BglII, Anza 73 BclI, Anza 97 Bsp143I
Anza 56 Hin1II	Anza 25 Pael, Anza 98 Xcel
Anza 58 Pagl	Anza 2 Ncol

Enzyma	Anza™ Postriction Enzymes resulting in compatible everbangs
Elizyme	
Anza 60 Kpn2l	Anza 7 Bsh11, Anza 85 Mrel, Anza 90 Eco881* (*If recognized sequence is 5'-CCCGGG-3')
Anza 63 Cpol	Anza 28 Kfll, Anza 87 Eco471
Anza 64 SaqAl	Anza 9 Ndel, Anza 76 Vspl, Anza 80 FspBl, Anza 122 Csp6l
Anza 65 Mspl	Anza 30 Bsu15I, Anza 88 Bsp119I, Anza 93 Hpall, Anza 103 Psp1406I, Anza 105 Hin1I, Anza 123 Hin6I, Anza 96 Xmil* (*if recognized sequence is 5'-GTCGAC-3')
Anza 73 Bcll	Anza 5 BamHI, Anza 19 BglII, Anza 55 Mbol, Anza 97 Bsp143I
Anza 75 Alw44I	Anza 94 BfmI* (* if recognized sequence is 5'-CTGCAG-3')
Anza 76 Vspl	Anza 9 Ndel, Anza 64 SaqAl, Anza 80 FspBl, Anza 122 Csp6l
Anza 80 FspBI	Anza 9 Ndel, Anza 64 SaqAl, Anza 76 Vspl, Anza 122 Csp6l
Anza 85 Mrel	Anza 7 BshTl, Anza 60 Kpn2l, Anza 90 Eco88l* (*If recognized sequence is 5'-CCCGGG-3')
Anza 87 Eco47I	Anza 28, Kfll, Anza 63 Cpol
Anza 88 Bsp119I	Anza 30 Bsu15I, Anza 65 Mspl, Anza 93 Hpall, Anza 103 Psp1406I, Anza 105 Hin1I, Anza 123 Hin6I, Anza 96 Xmil* (*if recognized sequence is 5'-GTCGAC-3')
Anza 90 Eco88I	If recognized sequence is 5'-CTCGAG-3', then generate compatible ends for Anza 8 Xhol, Anza 14 Sall If recognized sequence is 5'-CCCGGG-3', then generate compatible ends for Anza 7 BshTl, Anza 60 Kpn2l, Anza 85 Mrel
Anza 91 Acc65I	Anza 34 Pfl23II, Anza 39 Bsp1407I, Anza 129 BshNI* (*if recognized sequence is 5'-GGTACC-3')
Anza 93 Hpall	Anza 30 Bsu15I, Anza 65 Mspl, Anza 88 Bsp119I, Anza 103 Psp1406I, Anza 105 Hin1I, Anza 123 Hin6I, Anza 96 XmiI* (*if recognized sequence is 5'-GTCGAC-3')
Anza 94 Bfml	If recognized sequnce is 5'-CTGCAG-3', then generate compatible ends for Anza 75 Alw44I
Anza 95 MauBl	Anza 21 Sgsl, Anza 28 Mlul, Anza 45 Ptel
Anza 96 Xmil	If recognized sequence is 5'-GTCGAC-3', then generate compatible ends for Anza 30 Bsu15I, Anza 65 MspI, Anza 88 Bsp119I, Anza 93 HpaII, Anza 103 Psp1406I, Anza 105 Hin1I, Anza 123 Hin6I
Anza 97 Bsp143I	Anza 5 BamHI, Anza 19 BglII, Anza 55 Mbol, Anza 73 BclI
Anza 98 Xcel	Anza 25 Pael, Anza 56 Hin1II
Anza 103 Psp14061	Anza 30 Bsu15I, Anza 65 Mspl, Anza 88 Bsp119I, Anza 93 Hpall, Anza 105 Hin1I, Anza 123 Hin6I, Anza 96 Xmil* (*if recognized sequence is 5'-GTCGAC-3')
Anza 105 Hin1I	Anza 30 Bsu15I, Anza 65 Mspl, Anza 88 Bsp119I, Anza 93 Hpall, Anza 103 Psp1406I, Anza 123 Hin6I, Anza 96 Xmil* (*if recognized sequence is 5'-GTCGAC-3')
Anza 111 Xapl	Anza 11 EcoRI, Anza 31 MunI
Anza 121 Bsp120I	Anza 1 Notl, Anza 47 Eco52l
Anza 122 Csp6l	Anza 9 Ndel, Anza 64 SaqAl, Anza 76 Vspl, Anza 80 FspBl
Anza 123 Hin6l	Anza 30 Bsu15I, Anza 65 Mspl, Anza 88 Bsp119I, Anza 93 Hpall, Anza 103 Psp1406I, Anza 105 Hin1I, Anza 96 Xmil* (*if recognized sequence is 5'-GTCGAC-3')
Anza 126 Alw211	If recognized sequence is 5'-GAGCTC-3', then generate compatible ends for Anza 20 Sacl If recognized sequnece is 5'-GTGCAC-3', then generate compatible ends for Anza 23 PstI, Anza 37 Mph1103I
Anza 129 BshNI	If recognized sequence is 5'-GGTACC-3', then generate compatible ends for Anza 34 Pfl23II, Anza 39 Bsp1407I, Anza 91 Acc65I

Appendix D: Types of DNA end repair

Overview Commonly used enzymes for modification of DNA ends are DNA Polymerase I, Large (Klenow) Fragment and T4 DNA Polymerase. The choice of enzyme depends on whether the restriction enzyme generates a 3' or a 5' overhang.

In the case of 3' overhangs (e.g. those generated by KpnI), T4 DNA Polymerase is preferred because it has a stronger $3' \rightarrow 5'$ exonuclease activity than Klenow. The 3' overhang is removed by the exonuclease activity.

For 5' overhangs (e.g. those generated by EcoRI), either Klenow or T4 DNA Polymerase can be used to fill in the overhangs through $5' \rightarrow 3'$ polymerase activity.

In some instances, mung bean nuclease or S1 nuclease can be used to trim single-stranded DNA overhangs through $5' \rightarrow 3'$ exonuclease activity on single-stranded DNA (ssDNA).

Ordering information

Additional products

The following products are also available from Thermo Fisher Scientific. For more details on these products, visit **thermofisher.com**, or contact **Technical Support** (page 23).

Use the Anza Enzyme Finder Tool at **thermofisher.com/anzafinder** to search for additional Anza[™] Restriction Enzymes.

Item	Amount	Cat. no.
AnzalM T/ DNA Lingso Master Mix	50 reactions	IVGN210-4
Anza ^m 14 DNA Ligase Master Mix	200 reactions	IVGN210-8
Anza M Alkaline Phoenhatase	500 reactions	IVGN220-4
	2000 reactions	IVGN220-8
Anza™ T4 PNK Kit	500 reactions	IVGN230-4
Anza™ DNA Blunt End Kit	100 reactions	IVGN240-4
Anza™ DNA End Repair Kit	20 reactions	IVGN250-4
Anza™ 10X Buffer Set	1 kit	IVGN200-8
Anza™ Starter Kit	5 pack	IVGN300-4
Anza™ Starter Kit	10 pack	IVGN300-6
Platinum™ Taq Green Hot Start DNA Polymerase	120 reactions	11966-018
Platinum™ Taq DNA Polymerase	300 reactions	10966-026
PureLink™ PCR Purification Kit	50 preps	K3100-01
PureLink™ Quick Gel Extraction and PCR Purification Combo Kit	50 preps	K2200-01
PureLink™ Quick Gel Extraction Kit	50 preps	K2100-12
ReadyPouch™ 1% Agarose Gels	10 pouches	A25647
1 Kb Plus DNA Ladder	250 µg	10787-018
One Shot™ TOP10 Chemically Competent <i>E. coli</i>	20 transformations	C4040-03
One Shot™ INV110 Chemically Competent <i>E. coli</i>	20 transformations	C7171-03
One Shot™ OmniMAX™ 2 T1 [®] Chemically Competent <i>E. coli</i>	20 transformations	C8540-03
One Shot™ Mach1™ T1 Phage Resistant Chemically Competent <i>E. coli</i>	20 transformations	C8620-03
Select Agar™, powder	500 g	30391-023
S.O.C. medium	10 x 10 mL	15544-034
LB Broth Base	500 g	12780-052
LB Broth	500 mL	10855-021

Technical Support

Obtaining support	For the latest services and support information for all locations, go to thermofisher.com At the website, you can:		
Support	• Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities		
	Search through frequently asked questions (FAQs)		
	• Submit a question directly to Technical Support (techsupport@lifetech.com)		
	• Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents		
	Obtain information about customer training		
	Download software updates and patches		
Safety Data Sheets (SDS)	Safety Data Sheets (SDSs) are available at thermofisher.com/support .		
Certificate of Analysis	The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to thermofisher.com/support . and search for the Certificate of Analysis by product lot number, which is printed on the box.		
Limited product warranty	Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale found on Life Technologies' website at www.lifetechnologies.com/termsandconditions . If you have any questions, please contact Life Technologies at www.lifetechnologies.com/support .		

For support visit thermofisher.com/support or email techsupport@lifetech.com thermofisher.com 15 September 2015

