invitrogen

Champion[™] pET300/NT-DEST and pET301/CT-DEST Gateway[®] Vectors

Destination vectors for high-level, inducible expression of N- and C-terminal 6xHis-tagged protein in *E. coli*

Catalog no. K6300-01

Version D June 23, 2010 25-0956

User Manual

Table of Contents

Table of Contents	iii
Important Information	iv
Accessory Products	v
Methods	1
Overview	1
Methods	4
Generating an Entry Clone	4
Generating an Expression Clone	6
Performing the LR Recombination Reaction	9
Expression and Analysis	13

Appendix	16
Map of pET300/NT-DEST	16
Map of pET301/CT-DEST	17
Features of pET300/NT-DEST and pET301/CT-DEST	18
Map of pET300/NT-GW/Rac Kinase	19
Technical Support	20
Purchaser Notification	22
Gateway [®] Clone Distribution Policy	24
References	25
Notes	26

Important Information

Shipping and Storage	Champion [™] pET300/NT-DEST, pET301/CT-DEST and pET300/NT-GW/Rac Kinase vectors are shipped at room temperature. Upon receipt, store lyophilized vectors at -20°C.
Contents	The Champion [™] pET300/NT-DEST and pET301/CT-DEST vector kit contains the N- and C-terminal destination vectors and an expression control plasmid as listed below:

Item	Concentration	Amount
pET300/NT-DEST	lyophilized in TE, pH 8.0	6 µg
pET301/CT-DEST	lyophilized in TE, pH 8.0	6 µg
pET300/NT-GW/Rac Kinase	lyophilized in TE, pH 8.0	10 µg

Accessory Products

Additional Products

Additional products that may be used with pET300/NT-DEST and pET301/CT-DEST are available from Invitrogen. Ordering information is provided below.

Product	Amount	Catalog no.
Gateway [®] LR Clonase [™] II Enzyme Mix	20 reactions	11791-020
	100 reactions	11791-100
One Shot [®] <i>ccd</i> B Survival T1 ^R Chem. Competent Cells	10 reactions	C7510-03
BL21(DE3) Chem. Competent Cells	20 x 50 µl	C6000-03
One Shot [®] BL21 Star (DE3) Chem. Competent Cells	20 x 50 μl	C6010-03
One Shot [®] BL21(DE3) pLysS Chem. Competent Cells	20 x 50 μl	C6060-03
MagicMedia [™] E. coli Expression Medium	1 L SoluPouch [™]	K6801
	$5 \ge 1 L$ SoluPouch TM	K6802
	1 L liquid	K6803
Ampicillin	5 g	Q100-16
Carbenicillin	5 g	10177-012

Detection and Purification of Recombinant Fusion Protein

If your gene of interest is in frame with the N- or C-terminal polyhistidine (6x His) tag, you may detect your fusion protein with an antibody to the polyhistidine tag. You may also purify your recombinant fusion protein using a metal chelating system.

Product	Quantity	Catalog no.
Mouse anti-His Tag monoclonal antibody	100 µg	37-2900
ProBond [™] Nickel-chelating Resin	50 ml	R801-01
	150 ml	R801-15
ProBond [™] Purification System	6 purifications	K850-01
Ni-NTA Agarose	10 ml	R901-15
	25 ml	R901-25
	100 ml	R901-10
Purification Columns	50	R640-50
(10 ml polypropylene columns)		

Methods

Overview	
Description	Champion [™] pET300/NT-DEST and pET301/CT-DEST are ~7.3 kb vectors adapted for use with the Gateway [®] Technology. They are designed to allow high-level, inducible expression of recombinant fusion proteins in <i>E. coli</i> using the pET system. Both Champion [™] pET300/NT-DEST and pET301/CT-DEST are included, allowing you to choose the best configuration and protein expression levels for your needs. A control expression plasmid, pET300/NT-GW/Rac Kinase, is included to optimize protein expression.
The pET Expression System	The pET system was originally developed by Studier and colleagues and takes advantage of the high activity and specificity of the bacteriophage T7 RNA polymerase to allow regulated expression of heterologous genes in <i>E. coli</i> from the T7 promoter (Rosenberg <i>et al.</i> , 1987; Studier & Moffatt, 1986; Studier <i>et al.</i> , 1990). For more information about T7-regulated expression, see the next page.
Features	 Champion[™] pET300/NT-DEST and pET301/CT-DEST vectors contain the following elements: T7<i>lac</i> promoter for high-level expression of the gene of interest in <i>E. coli</i> (see next page for more information) Two recombination sites, <i>att</i>R1 and <i>att</i>R2, downstream of the T7 promoter for recombinational cloning of the gene of interest from an entry clone Chloramphenicol resistance gene located between the two <i>att</i>R sites for counterscreening The <i>ccd</i>B gene located between the two <i>att</i>R sites for negative selection N- or C-terminal 6x His tag for detection and purification Ampicillin resistance gene for selection in <i>E. coli</i> pBR322 origin for low-copy replication and maintenance of the plasmid in <i>E. coli</i> <i>lac</i>I gene encoding the lac repressor to reduce basal transcription from the T7<i>lac</i> promoter For maps of pET300/NT-DEST and pET301/CT-DEST, see pages 16-17.

Overview, continued

The Gateway [®] Technology	 Gateway[®] is a universal cloning technology that takes advantage of the site-specific recombination properties of bacteriophage lambda (Landy, 1989) to provide a rapid and highly efficient way to move your gene of interest into multiple vector systems. To express your gene of interest using Gateway[®] cloning technology, simply: Clone your gene of interest into a Gateway[®] entry vector to create an entry clone. 	
	2. Generate an expression clone by performing an LR recombination reaction between the entry clone and pET300/NT-DEST or pET301/CT-DEST	
	3. Transform your expression clone into a BL21 strain of choice, and induce expression of your protein with your method of choice.	
	For more information on the Gateway [®] System, refer to the Gateway [®] Technology Manual. This manual is available for downloading from www.invitrogen.com or by contacting Technical Support (page 20).	
T7-Regulated Expression	pET300/NT-DEST and pET301/CT-DEST contain elements from bacteriophage T7 to control expression of heterologous genes in <i>E. coli</i> . In the vector, expression of the gene of interest is controlled by a strong bacteriophage T7 promoter that has been modified to contain a <i>lac</i> operator sequence (see next page). In bacteriophage T7, the T7 promoter drives expression of gene 10. T7 RNA polymerase specifically recognizes this promoter. To express the gene of interest, it is necessary to deliver T7 RNA polymerase to the cells by inducing expression of the polymerase.	

Overview, continued

T7 <i>lac</i> Promoter	pET300/NT-DEST and pET301/CT-DEST contain the T7 <i>lac</i> promoter to drive expression of the gene of interest. The T7 <i>lac</i> promoter consists of a <i>lac</i> operator sequence placed downstream of the T7 promoter. The <i>lac</i> operator serves as a binding site for the lac repressor (encoded by the <i>lac</i> I gene) and functions to further repress T7 RNA polymerase-induced basal transcription of the gene of interest in BL21 strains.
BL21 Strains	The BL21(DE3) <i>E. coli</i> strain is specifically designed for expression of genes regulated by the T7 promoter. Basal level expression of T7 polymerase, particularly in BL21(DE3) cells, may lead to plasmid instability if your gene of interest is toxic to <i>E. coli</i> . You may also use BL21 Star [™] (DE3) and BL21 Star [™] (DE3)pLysS strains if your protein is toxic to <i>E. coli</i> . See page v for ordering information.

Methods

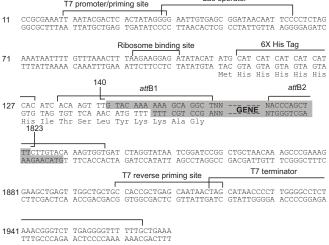
Generating an Entry Clone

Introduction	To recombine your gene of interest into pET300/NT-DEST or pET301/CT-DEST, you will need one or more entry clones containing the gene of interest. Refer to the manual for the specific entry vector you are using for detailed instructions to construct an entry clone.
Choosing an Entry Vector	 You may generate entry clones in a number of ways: Use pENTR[™]/D-TOPO[®], pCR8[®]/GW/TOPO[®] or pENTR[™]/SD/D-TOPO (for pET301/CT-DEST) to rapidly clone of your promoter and gene of interest using TOPO[®] Cloning technology. Perform a BP recombination reaction using a PCR product containing <i>att</i>B sites and an <i>att</i>P-containing pDONR[™] vector to create your entry clone. A large selection of pDONR[™] vectors is available from Invitrogen. For more information about these products, go to www.invitrogen.com or contact Technical Support (page 20).
Recombining into pET300/NT- DEST	 pET300/NT-DEST is an N-terminal fusion vector and contains an ATG initiation codon and a Shine-Dalgarno ribosome binding site (RBS) with optimal spacing for proper translation. Your gene of interest in the entry clone must: Be in frame with the N-terminal tag after recombination. Contain a stop codon. Refer to the diagram of the recombination region of pET300/NT-DEST on page 7 for more information.

Generating an Entry Clone, continued

Recombining into	To recombine your gene of interest into pET301/CT-DEST your entry clone must include:
pET301/CT- DEST	A Shine-Delgarno ribosome binding sequence
	An ATG initiation sequence
	• If you wish to include the 6x His tag, your gene in the entry clone should not contain a stop codon.

• If you DO NOT wish to fuse your gene of interest to the 6xHis tag, your gene should contain a stop codon in the entry clone.


Refer to the diagram of the recombination region of pET301/CT-DEST on page 8 for more information.

Generating an Expression Clone

Introduction	After you have generated an entry clone, you will perform the LR recombination reaction to transfer the gene of interest into the pET300/NT-DEST or pET301/CT-DEST vector to create your expression clone. To ensure that you obtain the best results, we recommend that you read this section and the next section entitled Performing the LR Recombination Reaction (pages 9-12) before beginning.	
Experimental Outline	 To generate an expression clone, you will: Perform an LR recombination reaction using the <i>att</i>L-containing entry clone(s) and the <i>att</i>R-containing pET300/NT-DEST or pET301/CT-DEST. 	
	 Transform the reaction mixture into suitable <i>E. coli</i>. Select for expression clones (refer to pages 7-8 for a diagram of the recombination regions of the resulting expression clones). 	
Resuspending Vectors	Resuspend pET300/NT-DEST and pET301/CT-DEST to $150 \text{ ng}/\mu l$ each in sterile water.	
Propagating the Vectors	If you wish to propagate and maintain pET300/NT-DEST and pET301/CT-DEST, we recommend using One Shot [®] <i>ccdB</i> Survival T1 ^R Chemically Competent <i>E. coli</i> from Invitrogen for transformation. The <i>ccdB</i> Survival T1 ^R <i>E. coli</i> strain is resistant to ccdB effects and can support the propagation of plasmids containing the <i>ccdB</i> gene. To maintain the integrity of the vector, select for transformants in media containing 50-100 µg/ml ampicillin and 15-30 µg/ml chloramphenicol. Note: Do not use general <i>E. coli</i> cloning strains including TOP10 or DH5 for propagation and maintenance as these strains are sensitive to ccdB effects.	

Generating an Expression Clone, continued

The recombination region of the expression clone resulting Recombination Region of from pET300/NT-DEST \times entry clone is shown below. pET300/NT-Features of the Recombination Region: DEST Shaded regions correspond to DNA sequences transferred from the entry clone into pET300/NT-DEST by recombination. Non-shaded regions are derived from the pET300/NT-DEST vector. The underlined nucleotides flanking the shaded region correspond to bases 140 and 1823, respectively, of the pET300/NT-DEST vector sequence. Lac operator T7 promoter/priming site

Generating an Entry Clone, continued

Recombi Region o pET301/C	f from pET301/CT-DEST \times entry clone is shown below.
DEST	 Shaded regions correspond to DNA sequences transferred from the entry clone into pET301/CT-DEST by recombination. Non-shaded regions are derived from the pET301/CT-DEST vector.
	 The underlined nucleotides flanking the shaded region correspond to bases 113 and 1786, respectively, of the pET301/CT-DEST vector sequence.
11	T7 promoter/priming site Lac operator CCGCGAAATT AATACGACTC ACTATAGGGG AATTGTGAGC GGATAACAAT TCCCCTCTAG AAATAATTTT GGCGCTTTAA TTATGCTGAG TGATATCCCC TTAACACTCG CCTATTGTTA AGGGGGAGATC TTTATTAAAA 113
81	GTTTAAACTT TAAATATACA TAATCACAAG TTTGTACAAAA AAGCAGGCT
	1786 6X His Tag TTC TTG TAC AAA GTG GTG ATT ATG CAT CAT CAT CAT CAT CAC TAG TAA TCGTCCGGCT AAG AAA GTG TTT CAC CAC TAA TAC GTA GTA GTA GTA GTA GTG *** *** AGCAGGCCGA Phe Leu Tyr Lys Val Val Ile Mat His His His His His His His
	T7 reverse priming site
1854	GCTAACAAAG CCCGAAAGGA AGCTGAGTTG GCTGCTGCCA CCGCTGAGCA ATAACTAGCA TAACCCCTTG CGATTGTTTC GGGCTTTCCT TCGACTCAAC CGACGACGGT GGCGACTCGT TATTGATCGT ATTGGGGAAC T7 terminator
1924	GGGCCTCTAA ACGGGTCTTG AGGGGTTTTTT GCTGAAAGGA GGAACTATAT CCCGGAGATT TGCCCAGAAC TCCCCAAAAAA CGACTTTCCT CCTTGATATA

Performing the LR Recombination Reaction

Introduction	Once you have obtained an entry clone containing your gene of interest, you may perform an LR recombination reaction between the entry clone and pET300/NT-DEST or pET301/CT-DEST and transform the reaction mixture into a suitable <i>E. coli</i> host (see below) to select for an expression clone. We recommend including a negative control (no LR Clonase [™] II) to help you evaluate your results.
<i>E. coli</i> Host	You may use any <i>recA</i> , <i>endA E</i> . <i>coli</i> strain including TOP10, DH5 a^{TM} , or equivalent for transformation (see page v for ordering information). Do not transform the LR reaction mixture into <i>ccdB</i> Survival T1 ^R Chemically Competent <i>E</i> . <i>coli</i> or <i>E</i> . <i>coli</i> strains that contain the F' episome (<i>e.g.</i> TOP10F'). These strains contain the <i>ccdA</i> gene and will prevent negative selection with the <i>ccdB</i> gene.
LR Clonase™ II Enzyme Mix	LR Clonase [™] II enzyme mix is available separately from Invitrogen. The LR Clonase [™] II enzyme mix combines the proprietary enzyme formulation and 5X LR Clonase [™] Reaction Buffer in an optimized single-tube format for easy set-up of the LR recombination reaction. Use the protocol on page 11 to perform the LR recombination reaction using LR Clonase [™] II enzyme mix.

Performing the LR Recombination Reaction, continued

Materials	You should have the following materials:
Needed	 Purified plasmid DNA of your entry clone (150 ng/µl in TE, pH 8.0)
	 pET300/NT-DEST or pET301/CT-DEST (150 ng/µl in TE, pH 8.0)
	 LR Clonase[™] II enzyme mix (keep at -20°C until immediately before use)
	 1X TE Buffer, pH 8.0 (10 mM Tris-HCl, pH 8.0, 1 mM EDTA)
	 2 µg/µl Proteinase K solution (supplied with the enzyme mix; thaw and keep on ice until use)
	• Appropriate competent <i>E. coli</i> host and growth media
	• S.O.C. Medium

• LB agar plates containing 100 µg/ml ampicillin

Performing the LR Recombination Reaction, continued

Setting Up the LR Reaction

Follow this procedure to perform the LR reaction between your entry clone and a destination vector. To include a negative control, set up a second sample reaction, but omit the LR Clonase[™] II enzyme mix.

1. Add the following components to 1.5 ml microcentrifuge tubes at room temperature and mix.

Component	Sample
Entry clone (50-150 ng/rxn)	1-7 µl
Destination vector (150 ng/µl)	1 µl
1X TE Buffer, pH 8.0	to 8 µl

- 2. Remove the LR Clonase[™] II enzyme mix from -20°C and thaw on ice (~ 2 minutes).
- Vortex the LR Clonase[™] II enzyme mix briefly twice (2 seconds each time).
- To each sample above, add 2 µl of LR Clonase[™] II enzyme mix. Mix well by pipetting up and down.

Reminder: Return LR Clonase[™] II enzyme mix to -20°C immediately after use.

- Incubate reactions at 25°C for 1 hour.
 Note: Extending the incubation time to 18 hours typically yields more colonies.
- 6. Add 1 μl of the Proteinase K solution to each reaction. Incubate for 10 minutes at 37°C.
- Transform 1 µl of the LR recombination reaction into a suitable *E. coli* host (follow the manufacturer's instructions) and select for expression clones.

Note: You may store the LR reaction at -20°C for up to 1 week before transformation, if desired.

Performing the LR Recombination Reaction, continued

What You Should See	If you use <i>E</i> . <i>coli</i> cells with a transformation efficiency of $\ge 1 \ge 1 \ge 10^8$ cfu/µg, a typical LR reaction should give > 5,000 colonies if the entire reaction is transformed and plated.		
Confirming the Expression Clone	The <i>ccd</i> B gene mutates at a very low frequency, resulting in a very low number of false positives. True expression clones will be ampicillin-resistant and chloramphenicol-sensitive. Transformants containing a plasmid with a mutated <i>ccd</i> B gene will be both ampicillin- and chloramphenicol-resistant. To check your putative expression clone, test for growth on LB plates containing 30 μ g/ml chloramphenicol. A true expression clone will not grow in the presence of chloramphenicol.		
Sequencing	or C-te constru the loc For yo synthe	To confirm that your gene of interest is in frame with the N- or C-terminal 6X His tag, you may sequence your expression construct, if desired. Refer to the diagrams on pages 7-8 for the location of the primer binding sites. For your convenience, Invitrogen offers a custom primer synthesis service. For more information, go to www.invitrogen.com or contact Technical Support (page 20).	
Primer		Sequence	

Primer	Sequence	
T7 Promoter	5'-TAATACGACTCACTATAGGG-3'	
T7 Reverse	5'-TAGTTATTGCTCAGCGGTGG-3'	

The Next StepOnce you have generated your expression clone, you will
need to transform it into a BL21 *E. coli* strain for expression
studies. See page v for recommended BL21 host strains and
media, and proceed to Expression and Analysis, next
section.

Expression and Analysis

Introduction	This section provides general guidelines for expressing and analyzing your protein of interest. For detailed information on transforming your BL21 strain, inducing expression, and analyzing samples, refer to your specific BL21 <i>E. coli</i> strain manual.
Basic Strategy	The basic steps needed to induce expression of your gene in a BL21 <i>E. coli</i> strain are outlined below.
	1. Isolate plasmid DNA using standard procedures and transform your construct into BL21 cells (see page 3). Use pET303/NT-GW/Rac Kinase included with the kit as a positive control (see next page)
	2. Grow the transformants and induce expression over several hours. Take several time points to determine the optimal time of expression. Alternatively, you can grow <i>E. coli</i> using MagicMedia [™] (see Recommendation, below).
- Der Contraction of the second secon	MagicMedia <i>E. coli</i> Expression Medium allows high yield of T7-regulated heterologous protein expression without time- consuming steps such as monitoring O.D. or adding inducing agents such as IPTG. MagicMedia [™] is available separately from Invitrogen, see page v for ordering information or go to www.invitrogen.com for more details.
Plasmid Preparation	You may prepare plasmid DNA using your method of choice. We recommend using the PureLink [™] HiPure Plasmid Midiprep Kit for isolation of pure plasmid DNA. Note that since you are purifying a low-copy number plasmid, you may need to increase the amount of bacterial culture that you use to prepare your plasmid construct.

Expression and Analysis, continued

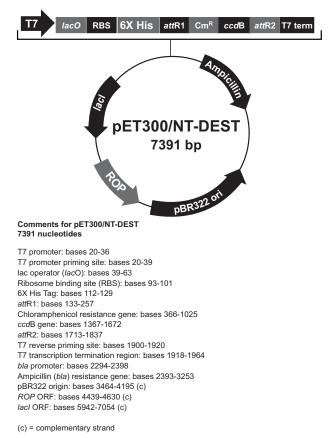
Choosing a Selection Agent	For most purposes, ampicillin works well for selection of transformants and expression experiments. However, if you find that your expression level is low, you may want to use carbenicillin instead. The resistance gene for ampicillin encodes a protein called β -lactamase. This protein is secreted into the medium where it hydrolyzes ampicillin, inactivating the antibiotic. Since β -lactamase is catalytic, ampicillin is rapidly removed from the medium, resulting in non-selective conditions. If your plasmid is unstable, this may result in the loss of plasmid and low expression levels.		
Using Carbenicillin	Carbenicillin is generally more stable than ampicillin, and studies have shown that using carbenicillin in place of ampicillin may help to increase expression levels by preventing loss of the expression plasmid. If you wish to use carbenicillin, perform your transformation and expression experiments in LB containing $50 \ \mu g/ml$ carbenicillin.		
	Note: If your gene of interest is highly toxic, increasing the concentration of carbenicillin used from 50 μ g/ml to 200 μ g/ml may help to increase expression levels.		
Expression Control Vector pET303/NT- GW/Rac Kinase	pET303/NT-GW/Rac Kinase is provided for use as a positive control vector for protein synthesis in a suitable <i>E. coli</i> host. This vector allows expression of a 6x His N-terminally tagged fusion protein of 57.7 kDa (Jones <i>et al.,</i> 1991). For details about the vector, see page 19. To propagate and maintain the plasmid:		
	1. Resuspend the vector in 10 μ l of sterile water to prepare a 1 μ g/ μ l stock solution.		
	 Use the stock solution to transform a <i>recA</i>, <i>endA E. coli</i> strain like TOP10, DH5a[™]-T1^R, or equivalent. Use 10 ng of plasmid for transformation. 		
	 Select transformants on LB agar plates containing 50-100 μg/ml ampicillin. 		
	4. Prepare a glycerol stock of a transformant containing plasmid for long-term storage.		

Expression and Analysis, continued

Detection of
Recombinant
Fusion
Proteins

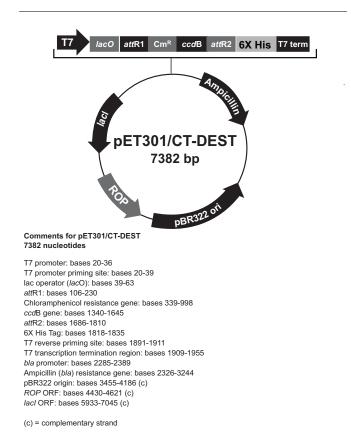
To detect expression of your recombinant fusion protein by western blot analysis, you may use antibodies against the polyhistidine tag (such as mouse anti-His monoclonal antibody, available separately from Invitrogen) or an antibody to your protein of interest. For more information see page v, go to www.invitrogen.com, or contact Technical Support (page 20).

The N-terminal peptide containing the 6x His tag will add approximately 2 kDa to your protein. The C-terminal peptide containing the 6x His tag will add approximately 2.5 kDa to your protein.


Purification of Recombinant Fusion Proteins

The presence of the N- or C-terminal 6x His tag in your recombinant fusion protein allows use of a metal-chelating resin such as ProBond[™] to purify your fusion protein. The ProBond[™] Purification System and bulk ProBond[™] resin are available from Invitrogen (see page v for ordering information). Invitrogen also offers Ni-NTA Agarose for purification of proteins containing a 6x His tag. **Note:** Other metal-chelating resins and purification methods are suitable.

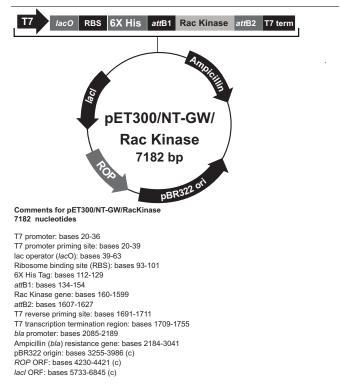
Appendix


Map of pET300/NT-DEST

Map of pET300/NT-DEST The map below shows the elements of pET300/NT-DEST. DNA from the entry clone replaces the region between bases 140 and 1823. The complete sequence of pET300/NT-DEST is available from www.invitrogen.com or by contacting Technical Support (page 20.)

Map of pET301/CT-DEST

Map of pET301/CT-DEST The map below shows the elements of pET301/CT-DEST. DNA from the entry clone replaces the region between bases 113 and 1786. The complete sequence of pET301/CT-DEST is available from www.invitrogen.com or by contacting Technical Support (page 20).



Features of pET300/NT-DEST and pET301/CT-DEST

Features of the /ectorsThe pET300/NT-DEST and pET301/CT-DEST vectors contain the following elements. Features have been functionally tested.		
Feature	Benefit	
T7 promoter	Allows high-level, inducible expression of your recombinant protein in <i>E. coli</i> strains expressing the T7 RNA polymerase	
T7 primer binding site	Allows sequencing of the insert	
<i>lac</i> operator (<i>lac</i> O)	Binding site for lac repressor that serves to reduce basal expression of the recombinant protein	
Ribosome binding site (pET300/NT-DEST only)	Optimally spaced from the initiation ATG for efficient translation of insert	
<i>att</i> R1 and <i>att</i> R2 sites	Allows recombinational cloning of the gene of interest from an entry clone	
Chloramphenicol resistance gene	Allows counterscreening of expression clones	
ccdB gene	Allows negative selection of expression clones	
N-terminal or C-terminal 6x His tag	Allows purification of the recombinant protein on metal-chelating resin such as ProBond™	
T7 reverse primer binding site	Allows sequencing of the insert	
T7 transcription termination region	Sequence from bacteriophage T7 which allows efficient transcription termination.	
<i>bla</i> promoter	Allows expression of the ampicillin resistance gene	
Ampicillin resistance gene	Allows selection of transformants in <i>E. coli</i>	
pBR322 origin	Allows replication and maintenance in E. coli	
ROP ORF	Interacts with the pBR322 origin to facilitate low-copy replication in <i>E. coli</i> .	
lacI ORF	Encodes lac repressor which binds to the T7 <i>lac</i> promoter to block basal transcription of the gene of interest. Also binds the <i>lac</i> UV5 promoter in BL21 strains containing the λ DE3 lysogen to repress transcription of T7 RNA polymerase	

Map of pET300/NT-GW/Rac Kinase

Map of pET300/NT-GW/Rac Kinase The map below shows the elements of pET300/NT-GW/Rac Kinase. The complete sequence of pET300/NT-GW/Rac Kinase is available from www.invitrogen.com or by contacting Technical Support (page 20).

(c) = complementary strand

Technical Support

World Wide Web	 Visit the Invitrogen web site at <u>www.invitrogen.com</u> for: Technical resources, including manuals, vector maps and sequences, application notes, MSDSs, FAQs, formulations, citations, handbooks, etc. Complete technical support contact information Access to the Invitrogen Online Catalog Additional product information and special offers
Contact Us	For more information or technical assistance, call, write, fax, or email. Additional international offices are listed on our web site

Corporate Headquarters:	Japanese Headquarters:	European Headquarters:
Invitrogen Corporation	Invitrogen Japan	Invitrogen Ltd
1600 Faraday Avenue	LOOP-X Bldg. 6F	Inchinnan Business Park
Carlsbad, CA 92008 USA	3-9-15, Kaigan	3 Fountain Drive
Tel: 1 760 603 7200	Minato-ku, Tokyo	Paisley PA4 9RF, UK
Tel (Toll Free): 1 800 955 6288	108-0022	Tel: +44 (0) 141 814 6100
Fax: 1 760 602 6500	Tel: 81 3 5730 6509	Fax: +44 (0) 141 814 6117
E-mail:	Fax: 81 3 5730 6519	E-mail:
tech_support@invitrogen.com	E-mail:	eurotech@invitrogen.com
	jpinfo@invitrogen.com	Ŭ

(www.invitrogen.com).

MSDS Requests	Material Safety Data Sheets (MSDSs) are available on our web site at <u>www.invitrogen.com/msds</u> .
Certificate of Analysis	Product qualification is described in the Certificate of Analysis (CofA), available on our web site by product lot number at <u>www.invitrogen.com/cofa</u> .

Technical Support, continued

Limited Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that Warranty every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, contact our Technical Support Representatives. Invitrogen warrants that all of its products will perform according to specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. This warranty limits Invitrogen Corporation's liability only to the cost of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order. Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or

publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Support Representatives.

Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

Purchaser Notification

Introduction

The Champion[™] pET300/NT-DEST and pET301/CT-DEST vector kit is covered under the licenses detailed below.

Limited Use Label License No. 19: Gateway[®] Cloning Products This product and its use is the subject of one or more of U.S. Patent Nos. 5,888,732, 6,143,557, 6,171,861, 6,270,969, and 6,277,608 and/or other pending U.S. and foreign patent applications owned by Invitrogen Corporation. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for profit entity). The purchase of this product does not convey a license under any method claims in the foregoing patents or patent applications, or to use this product with any recombination sites other than those purchased from Invitrogen Corporation or its authorized distributor. The right to use methods claimed in the foregoing patents or patent applications with this product for research purposes only can only be acquired by the use of Clonase[™] purchased from Invitrogen Corporation or its authorized distributors. The buyer cannot modify the recombination sequence(s) contained in this product for any purpose. The buyer cannot sell or otherwise transfer (a) this product, (b) its components, or (c) materials made by the employment of this product or its components to a third party or otherwise use this product or its components or materials made by the employment of this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the employment of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Notwithstanding the preceding, any buyer who is employed in an academic or government institution may transfer materials made with this product to a third party who has a license from Invitrogen under the patents identified above to distribute such materials. Transfer of such materials and/or information to collaborators does not convey rights to practice any methods claimed in the foregoing patents or patent applications. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research.

Purchaser Notification, continued

Limited Use Label License No. 30: T7 Expression System

The composition and/or use of this product may be claimed in U.S. Patent No. 5,693,489 licensed to Life Technologies Corporation by Brookhaven Science Associates, LLC. The T7 expression system is based on technology developed at Brookhaven National Laboratory under contract with the U.S. Department of Energy, and is the subject of patents and patent applications assigned to Brookhaven Science Associates, LLC (BSA,). By provisions of the Distribution License Agreement granted to Life Technologies covering said patents and patent applications, Life Technologies grants you a non-exclusive sub-license under patents assigned to BSA for the use of this technology, including the enclosed materials, based upon the following conditions: 1 - these materials are to be used for non-commercial research purposes only. A separate license under patents owned by BSA is required for any commercial use, including the use of these materials for research purposes or production purposes by any commercial entity. Information about commercial license may be obtained from The Office of Technology Transfer, Brookhaven National Laboratory, Bldg. 475D, P.O. Box 5000, Upton, New York 11973-5000. Phone (516) 344-7134. 2 - No materials that contain the cloned copy of the T7 gene 1, the gene for T7 RNA polymerase, may be distributed further to third parties outside of your laboratory, unless the recipient receives a copy of this sub-license and agrees to be bound by its terms. This limitation applies to strains BL21(DE3), BL21(DE3)pLysS and BL21(DE3)pLysE, CE6, BL21-SI Competent Cells and any derivatives that are made of them. You may refuse this sub-license by returning this product unused in which case Life Technologies accept return of the product with a full refund. By keeping or using this product, you agree to be bound by the terms of this license.

Gateway[®] Clone Distribution Policy

Introduction	The information supplied in this section is intended to provide clarity concerning Invitrogen's policy for the use and distribution of cloned nucleic acid fragments, including open reading frames, created using Invitrogen's commercially available Gateway [®] Technology.
Gateway [®] Entry Clones	Invitrogen understands that Gateway [®] entry clones, containing <i>att</i> L1 and <i>att</i> L2 sites, may be generated by academic and government researchers for the purpose of scientific research. Invitrogen agrees that such clones may be distributed for scientific research by non-profit organizations and by for-profit organizations without royalty payment to Invitrogen.
Gateway [®] Expression Clones	Invitrogen also understands that Gateway [®] expression clones, containing <i>att</i> B1 and <i>att</i> B2 sites, may be generated by academic and government researchers for the purpose of scientific research. Invitrogen agrees that such clones may be distributed for scientific research by academic and government organizations without royalty payment to Invitrogen. Organizations other than academia and government may also distribute such Gateway [®] expression clones for a nominal fee (\$10 per clone) payable to Invitrogen.
Additional Terms and Conditions	We would ask that such distributors of Gateway [®] entry and expression clones indicate that such clones may be used only for research purposes, that such clones incorporate the Gateway [®] Technology, and that the purchase of Gateway [®] Clonase [™] from Invitrogen is required for carrying out the Gateway [®] recombinational cloning reaction. This should allow researchers to readily identify Gateway [®] containing clones and facilitate their use of this powerful technology in their research. Use of Invitrogen's Gateway [®] Technology, including Gateway [®] clones, for purposes other than scientific research may require a license and questions concerning such commercial use should be directed to Invitrogen's licensing department at 760-603-7200.

- Jones, P. F., Jakubowicz, T., Pitossi, F. J., Maurer, F., and Hemmings, B. A. (1991) Molecular cloning and identification of a serine/threonine protein kinase of the second messenger subfamily. PNAS *88*, 4171-4175
- Landy, A. (1989) Dynamic, Structural, and Regulatory Aspects of Lambda Sitespecific Recombination. Ann. Rev. Biochem. 58, 913-949
- Rosenberg, A. H., Lade, B. N., Chui, D.-S., Lin, S.-W., Dunn, J. J., and Studier, F. W. (1987) Vectors for Selective Expression of Cloned DNAs by T7 RNA Polymerase. Gene 56, 125-135
- Studier, F. W., and Moffatt, B. A. (1986) Use of Bacteriophage T7 RNA Polymerase to Direct Selective High-Level Expression of Cloned Genes. J. Mol. Biol. 189, 113-130
- Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA Polymerase to Direct Expression of Cloned Genes. Meth. Enzymol. 185, 60-89

©2006-2007 Invitrogen Corporation. All rights reserved.

For research use only. Not intended for any animal or human therapeutic or diagnostic use.

Notes

Notes

Notes

invitrogen®

Corporate Headquarters Invitrogen Corporation 1600 Faraday Avenue Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech.service@invitrogen.com

For country-specific contact information visit our web site at www.invitrogen.com