# TaqMan<sup>®</sup> OpenArray<sup>®</sup> Genotyping Barcode Panel

High-throughput sample identification on the OpenArray® platform

The OpenArray® technology is a nanofluidics platform for low volume, solution-phase reactions that streamlines real-time PCR studies using large numbers of samples and assays. A single TaqMan® OpenArray® Genotyping Barcode Panel plate holds 3,072 real-time PCR reactions and contains a defined selection of human SNP markers. These panels combine the efficiency of highthroughput platforms with the robust genotyping performance of TaqMan® Assays.

#### Tracks sample identity

As the number of biological research samples expands by orders of magnitude, the proper tracking and confirmation of sample identity has become increasingly critical. The TaqMan® OpenArray® Genotyping Barcode Panels are reliable DNA fingerprinting panels that provide quality control for sample storage and experimental processing. The barcode panels determine gender and sample identity within the context of genomewide studies, biobanks, and genomic centers.



#### A variety of panel formats

The TaqMan® OpenArray® Barcode Panels are available as two 32 SNP panels and an extended 64 SNP panel (Table 1). The 32A SNP panel consists of three Y markers for gender confirmation and 29 autosomal SNPs, which allow for unique identification of individual samples for biorepository applications.

The set of markers in the 32A panel are sufficient for the unique identification of most samples. If additional specificity is required, results from the 32B panel may be used to supplement results from the 32A panel or the extended panel may be run together using the 64 panel. The extended panel consists of three Y-chromosome markers and 61 autosomal SNPs to allow for increased stringency. A total of 96 samples can be run with the 32 SNP panel and 48 samples can be run with the 64 SNP panel (Figure 1). The QuantStudio<sup>™</sup> 12K Flex Real-Time PCR System can run four plates at once, generating over 12,000 data points.



Table 1. Genotyping barcode panels (32A and 32B SNP). An extended 64 SNP panel is availablethat includes all SNPs from both the 32A and 32B panel.

|                        |                              |            |                 |          | HapMap*       |        |        |              |
|------------------------|------------------------------|------------|-----------------|----------|---------------|--------|--------|--------------|
| SNP ID (rs)            | TaqMan®                      | Chr        | Mb              | Allele 1 | Allele 2      | Ave    | rage   | Ν            |
|                        | Assay ID                     | Cill       | MD              |          |               | Freq 1 | Freq 2 |              |
| 32A SNP pan            | el                           |            |                 |          |               |        |        |              |
| rs3010325              | C2728408_10                  | 1          | 59.34           | С        | Т             | 0.51   | 0.49   | 2404         |
| rs2136241              | C1563023_10                  | 1          | 161.56          | С        | Т             | 0.47   | 0.53   | 2404         |
| rs2259397              | C15935210_10                 | 1          | 206.14          | Т        | С             | 0.52   | 0.48   | 2402         |
| rs7564899              | C33211212_10                 | 2          | 11.12           | G        | А             | 0.48   | 0.52   | 2408         |
| rs4971536              | C3227711_10                  | 2          | 20.95           | С        | Т             | 0.49   | 0.51   | 2408         |
| rs10194978             | C30044763_10                 | 2          | 50.38           | G        | А             | 0.50   | 0.50   | 2402         |
| rs4855056              | C11821218_10                 | 3          | 183.12          | А        | G             | 0.50   | 0.50   | 2404         |
| rs6554653              | C1670459_10                  | 5          | 11.92           | С        | Т             | 0.51   | 0.49   | 2404         |
| rs9396715              | C29619553_10                 | 6          | 10.02           | Т        | С             | 0.51   | 0.49   | 2408         |
| rs441460               | C1007630_10                  | 6          | 25.66           | G        | Α             | 0.52   | 0.48   | 2402         |
| rs7773994              | C26546714_10                 | 6          | 37.68           | Т        | G             | 0.53   | 0.47   | 2398         |
| rs1415762              | C7421900_10                  | 6          | 125.08          | С        | Т             | 0.54   | 0.46   | 2392         |
| rs6927758              | C27402849_10                 | 6          | 163.64          | С        | Т             | 0.49   | 0.51   | 2400         |
| rs7796391              | C2953330_10                  | 7          | 125.90          | A        | G             | 0.51   | 0.49   | 2402         |
| rs2336695              | C16205730_10                 | 8          | 1.02            | A        | G             | 0.49   | 0.51   | 2404         |
| rs1157213              | C8850710_10                  | 8          | 104.28          | Т        | С             | 0.50   | 0.50   | 2406         |
| rs10869955             | C1801627_10                  | 9          | 79.48           | С        | А             | 0.48   | 0.52   | 2402         |
| rs1533486              | C7431888_10                  | 10         | 1.50            | Т        | G             | 0.48   | 0.52   | 2404         |
| rs4751955              | C1250735_20                  | 10         | 117.91          | А        | G             | 0.47   | 0.53   | 2406         |
| rs10771010             | C1902433_10                  | 12         | 23.66           | Т        | С             | 0.52   | 0.48   | 2392         |
| rs12318959             | C31386842_10                 | 12         | 28.67           | С        | Т             | 0.53   | 0.47   | 2394         |
| rs3742257              | C26524789_10                 | 13         | 42.07           | Т        | С             | 0.47   | 0.53   | 2404         |
| rs1377935              | C8924366_10                  | 14         | 24.91           | Т        | С             | 0.50   | 0.50   | 2406         |
| rs946065               | C43852_10                    | 14         | 55.00           | С        | A             | 0.48   | 0.52   | 2404         |
| rs6598531              | C11522992_10                 | 15         | 96.95           | Т        | G             | 0.53   | 0.47   | 2402         |
| rs4783229              | C10076371_10                 | 16         | 81.18           | Т        | С             | 0.49   | 0.51   | 2406         |
| rs1567612              | C7457509_10                  | 18         | 34.09           | G        | А             | 0.51   | 0.49   | 2362         |
| rs11660213             | C1122315_10                  | 18         | 40.74           | A        | G             | 0.51   | 0.49   | 2408         |
| rs11083515             | C11710129_10                 | 19         | 44.39           | А        | G             | 0.47   | 0.53   | 2400         |
| rs768983**             | C1027548_20                  | Y          | 6.88            |          |               |        |        |              |
| rs3913290**            | C8938211_20                  | Y          | 8.66            |          |               |        |        |              |
| rs2032598**            | C1083232_10                  | Y          | 13.36           |          |               |        |        |              |
| 32B SNP par            | iel                          |            |                 |          |               |        |        |              |
| rs6427699              | C 29222350 10                | 1          | 161.16          | G        | A             | 0.50   | 0.50   | 2400         |
| rs891700               | C 7539584 10                 | 1          | 239.88          | 0        | G             | 0.30   | 0.50   | 2400         |
| rs7588807              | C 2915497 10                 | 2          | 237.88          | A<br>G   | U             | 0.47   | 0.48   | 1152         |
|                        |                              | 3          |                 | 0        | <br>Т         | 0.32   |        | 2406         |
| rs1983085<br>rs6791084 |                              | 3          | <u> </u>        | C<br>G   | A             | 0.48   | 0.52   | 2400         |
| rs10938367             | C1525594_10<br>C233438_10    | 4          | 44.53           | G        |               | 0.46   | 0.54   | 2400         |
|                        |                              |            |                 |          | A             |        |        |              |
| rs2561183              | C2934686_10                  | 5          | 68.77           | C        | A             | 0.52   | 0.48   | 2400         |
| rs2560588              | C26138080_10                 | 5<br>5     | 116.74          | A<br>C   | G             | 0.59   | 0.41   | 2201         |
| rs245057               | C3221475_10<br>C30289524_10  | <u>5</u> 6 | 149.32<br>44.55 | C        | <u>А</u><br>Т | 0.49   | 0.51   | 2392<br>2406 |
| rs9395021              |                              |            |                 |          |               |        |        |              |
| rs1337823              | C8768119_10                  | 6          | 49.92           | A        | G             | 0.51   | 0.49   | 2400         |
| rs974110<br>rs2268666  | C8307036_10<br>C 15875060 10 | 6          | 66.17           | A        | G             | 0.50   | 0.50   | 2400         |
|                        |                              | 6          | 146.79          | <u> </u> | T             | 0.45   | 0.55   | 2400         |
| rs2189730              | C26760518_10                 | 7          | 8.84            | G<br>    | A             | 0.45   | 0.55   | 2404         |
| rs7802855              | C_43039996_10                | 7          | 18.97           | T        | <u> </u>      | 0.49   | 0.51   |              |
| rs4716945              | C29867302_10                 | 7          | 155.43          | A        | G             | 0.49   | 0.51   | 2400         |
| rs4521710              | C126001_10                   | 7          | 157.74          | G        | A<br>T        | 0.47   | 0.53   | 2404         |
| rs11787149             | C1204228_10                  | 8          | 18.20           | <u> </u> |               | 0.50   | 0.50   | 240          |
| rs2970636              | C15964363_10                 | 8          | 37.00           | <u> </u> | Т             | 0.52   | 0.48   | 2404         |
| rs10955074             | C1677881_20                  | 8          | 87.93           | C        | Т<br>т        | 0.51   | 0.49   | 2404         |
| rs7925270              | C8466143_10                  | 11         | 120.07          | C        | T             | 0.51   | 0.49   | 2400         |
| rs12049869             | C31697299_10                 | 11         | 127.22          | A        | G             | 0.48   | 0.52   | 2400         |
| rs2239177              | C2608181_20                  | 12         | 11.93           | T        | C             | 0.54   | 0.46   | 2404         |
| rs7979054              | C29016807_10                 | 12         | 93.24           | A        | G             | 0.49   | 0.51   | 2400         |
| rs4148542              | C29558839_10                 | 13         | 94.48           | T        | <u> </u>      | 0.51   | 0.49   | 2400         |
| rs2153532              | C11476140_10                 | 14         | 86.01           | T        | C             | 0.52   | 0.48   | 2402         |
| rs2251110              | C8793799_20                  | 15         | 31.39           | G        | T             | 0.53   | 0.47   | 2394         |
| rs4984473              | C29415394_10                 | 15         | 94.33           | G        | A             | 0.52   | 0.48   | 2406         |
| rs312729               | C2333563_10                  | 17         | 65.82           | G        | A             | 0.53   | 0.47   | 2404         |
| rs2247021              | C9217468_10                  | 18         | 42.83           | G        | Т             | 0.53   | 0.47   | 2404         |
| rs607127               | C7910532_10                  | 18         | 58.74           | С        | Т             | 0.57   | 0.43   | 238          |
| rs1942719              | C 11200035 10                | 18         | 69.39           | С        | Т             | 0.51   | 0.49   | 2382         |

\*HapMap Data Rel 28 Phases II+III, August 10, on NCBI B36 assembly, dbSNP b126 (alleles, average allele frequencies based on N individuals genotyped within the 11 populations)

### 11 HapMap populations used: ASW

- (A) African ancestry in Southwest USA; CEU
- (C) Utah residents with Northern and Western European ancestry from the CEPH collection; CHB
- (H) Han Chinese in Beijing, China; CHD
- (D) Chinese in metropolitan Denver, Colorado; GIH
- (G) Gujarati Indians in Houston, Texas; JPT
- (J) Japanese in Tokyo, Japan; LWK
- (L) Luhya in Webuye, Kenya; MEX
- (M) Mexican ancestry in Los Angeles, California; MKK
- (K) Maasai in Kinyawa, Kenya; TSI
- (T) Toscani in Italy; YRI
- (Y) Yoruba in Ibadan, Nigeria

Y markers included for gender discrimination based on presence or absence of genotype call period

#### Notes:

- 1. The lowest average MAF = 0.43 for any SNP. The lowest MAF = 0.35 for any SNP in any individual population.
- Assays were selected by a collaboration of individuals at Life Technologies and the John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami FL. Contributors include Patrice L. Whitehead, Gary W. Beecham, Susan Slifer, Ioanna Konidari, William F. Hulme, Kathleen Hayashibara, Margaret A. Pericak-Vance, Jeffery M. Vance, John R. Gilbert, Dale J. Hedges, Jacob L. McCauley. Abstract is available at:

www.ashg.org/2010meeting/ abstracts/fulltext/f21684.htm

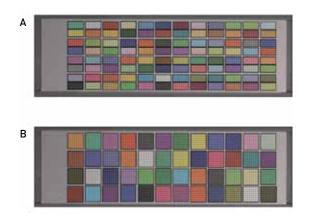



Figure 1. OpenArray<sup>®</sup> plate formats. (A) 32 assays and 96 samples. (B) 64 assays and 48 samples.

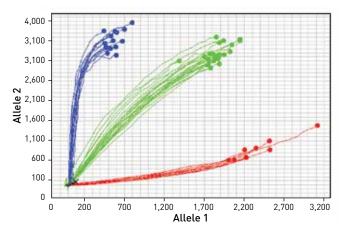



Figure 3. Trace plot of SNP genotyping data for rs4751955 obtained using the QuantStudio" 12K Flex system with OpenArray® Block.

The TaqMan® OpenArray® Barcode Panels are available for both the QuantStudio<sup>™</sup> 12K Flex Real-Time PCR System and the OpenArray® Real-Time PCR System. Users can be confident of high quality results on any OpenArray® platform. Figures 2–3 depict the breadth of data that can be generated using the TaqMan® OpenArray® panel with the QuantStudio<sup>™</sup> 12K Flex system. OpenArray® Real-Time PCR System data can be seen in Figure 4.

#### Determination of panel size

To determine the number of SNPs to use in the panel, SNPs with MAF of 0.4 were simulated against unrelated samples to examine the probability of a random match between unrelated individuals (Table 2). The number of SNPs represents the available common genotyping plate formats available using OpenArray<sup>®</sup> technology. The number of samples represents those that may be present within a given genome-wide genotyping set, a particular study or collection, or the entire collection of a large biobank. These simulations indicate that, in a set of

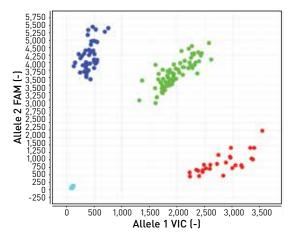



Figure 2. SNP genotyping data for rs4751955 obtained using the QuantStudio" 12K Flex system with OpenArray" Block.

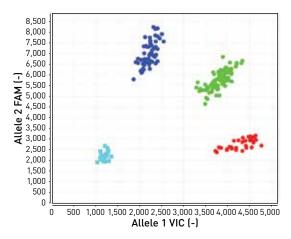



Figure 4. SNP genotyping data for rs4751955 obtained using the OpenArray<sup>®</sup> Real-Time PCR System.

| Table 2. Probability of a random match between two unrelated |
|--------------------------------------------------------------|
| individuals, assuming MAF = 0.41.                            |

| No. unrelated<br>samples | No.<br>SNPs | Probability of a<br>random match |
|--------------------------|-------------|----------------------------------|
| 5,000                    | 16          | 94.9545%                         |
| 5,000                    | 32          | <0.0001%                         |
| 5,000                    | 64          | <0.0001%                         |
| 10,000                   | 16          | 100%                             |
| 10,000                   | 32          | 0.0003%                          |
| 10,000                   | 64          | <0.0001%                         |
| 100,000                  | 16          | 100%                             |
| 100,000                  | 32          | 0.0285%                          |
| 100,000                  | 64          | <0.0001%                         |
| 200,000                  | 16          | 100%                             |
| 200,000                  | 32          | 0.1141%                          |
| 200,000                  | 64          | <0.0001%                         |
| 500,000                  | 16          | 100%                             |
| 500,000                  | 32          | 0.7108%                          |
| 500,000                  | 64          | <0.0001%                         |

5,000 samples, the probability of a random match of all genotypes between any two individuals is <0.0001% for either the 32 or 64 SNP panel. In a case of 200,000 samples, the probability is 0.1141% with the 32 SNP panel and <0.0001% with the 64 SNP panel.

#### Fully optimized selection of SNP assays

Markers for the panels have been selected based on a number of criteria. These include high minor allele frequency (MAF) in multi-ethnic populations, representation on high-throughput genotyping platforms, and robust genotyping performance. Marker selection started from the identification of SNPs common to multiple Genome-Wide Association Study (GWAS) datasets. This set was then refined to several hundred SNPs by examining HapMap genotype data (>0.35 MAF in all 11 Phase III HapMap populations). The marker set was narrowed further by choosing SNPs with the highest average MAF across populations and a high genotyping efficiency (>98%) within our internal GWAS datasets. The resulting panels of 32 and 64 SNPs were determined based on highest ranking genotyping efficiency, concordance between OpenArray<sup>®</sup> and original GWAS genotyping calls, and low probability of linkage disequilibrium between selected markers.

#### **Ordering information**

| Product                                                                                          | Contents             | Cat. No. |
|--------------------------------------------------------------------------------------------------|----------------------|----------|
| TaqMan® OpenArray® Genotyping Barcode Panel 32A QuantStudio™ 12K Flex                            | 1 plate              | 4475386  |
| TaqMan® OpenArray® Genotyping Barcode Panel 32B QuantStudio™ 12K Flex                            | 1 plate              | 4475387  |
| TaqMan® OpenArray® Genotyping Barcode Panel 64 QuantStudio™ 12K Flex                             | 1 plate              | 4475394  |
| TaqMan® OpenArray® Genotyping Barcode Panel 32A (for OpenArray® Real-Time PCR System)            | 1 plate              | 4475366  |
| TaqMan® OpenArray® Genotyping Barcode Panel 32B (for OpenArray® Real-Time PCR System)            | 1 plate              | 4475367  |
| TaqMan® OpenArray® Genotyping Barcode Panel 64 (for OpenArray® Real-Time PCR System)             | 1 plate              | 4475374  |
| Related products required for use with panels                                                    |                      |          |
| TaqMan® OpenArray® Genotyping Accessories Kit (for use with the OpenArray® Real-Time PCR System) | Enough for 10 plates | 4404572  |
| QuantStudio™ 12K Flex OpenArray® Accessories Kit                                                 | Enough for 10 plates | 4469576  |



## Find out more at lifetechnologies.com