# TaqMan<sup>®</sup> Ribosomal RNA Control Reagents

VIC<sup>™</sup> Probe

Protocol



© Copyright 2002, Applied Biosystems. All rights reserved.

#### For Research Use Only. Not for use in diagnostic procedures.

Information in this document is subject to change without notice. Applied Biosystems assumes no responsibility for any errors that may appear in this document. This document is believed to be complete and accurate at the time of publication. In no event shall Applied Biosystems be liable for incidental, special, multiple, or consequential damages in connection with or arising from the use of this document.

#### NOTICE TO PURCHASER: DISCLAIMER OF LICENSE

This product is optimized for use in the Polymerase Chain Reaction ("PCR") and 5' nuclease detection methods covered by patents owned by Roche Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd. No license under these patents to use the PCR process or 5' nuclease detection methods is conveyed expressly or by implication to the purchaser by the purchase of this product. A license to use the PCR process for certain research and development activities accompanies the purchase of certain Applied Biosystems reagents when used in conjunction with an authorized thermal cycler, or is available from Applied Biosystems. Further information on purchasing licenses to practice the PCR process may be obtained by contacting the Director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, or at Roche Molecular Systems, Inc., 1145 Atlantic Avenue, Alameda, California 94501.

ABI PRISM and its Design, and Applied Biosystems are registered trademarks of Applera Corporation or its subsidiaries in the U.S. and certain other countries.

AB (Design), ABI, ABI Masterpiece, Applera, AutoAssembler, BaseSprinter, CATALYST, GeneAssist, LV40, MatchMaker, PDQ, Primer Express, and ProSorb are trademarks of Applera Corporation or its subsidiaries in the U.S. and certain other countries.

AmpErase, AmpliTaq, AmpliTaq Gold, EnviroAmp, GeneAmp, and TaqMan are registered trademarks of Roche Molecular Systems, Inc.

AppleScript and Macintosh are registered trademarks of Apple, Inc.

All other trademarks are the sole property of their respective owners.

Printed in the USA, 04/2002 Part Number 4308310 Rev. C

# **Contents**

## 1 Introduction

| Overview                            | 1-1  |
|-------------------------------------|------|
| About This Chapter                  | 1-1  |
| In This Chapter                     | 1-1  |
| Purpose of the Kit                  | 1-2  |
| About the Kit                       | 1-2  |
| Basics of the 5' Nuclease Assay     | 1-2  |
| TaqMan Probe                        | 1-4  |
| About This Protocol                 | 1-4  |
| Amplicon Size                       | 1-5  |
| Materials and Equipment             | 1-6  |
| Kit Components                      | 1-6  |
| Performance Specifications          | 1-6  |
| Core Kits Supplied by the User      | 1-7  |
| Materials Required but Not Supplied | 1-7  |
| Storage and Stability               | 1-10 |
| Safety                              | 1-11 |
| Documentation User Attention Words  | 1-11 |
| Chemical Hazard Warning             | 1-11 |
| Chemical Waste Hazard Warning       | 1-12 |
| Site Preparation and Safety Guide   | 1-12 |
| About MSDSs                         | 1-12 |
| Ordering MSDSs                      | 1-13 |
| Preventing Contamination            | 1-14 |
| Overview                            | 1-14 |
| Hot Start PCR                       | 1-14 |
| False Positives                     | 1-14 |

| AmpErase UNG Inactivation           | 1-15 |
|-------------------------------------|------|
| Prevention of PCR Product Carryover | 1-15 |
| UNG in Two-Step Reactions           | 1-16 |
| UNG in One-Step Reactions           | 1-16 |
| General PCR Practices               | 1-16 |
| Fluorescent Contaminants            | 1-17 |

# 2 Performing PCR

| Overview                                                     |
|--------------------------------------------------------------|
| About This Chapter 2-1                                       |
| In This Chapter. 2-1                                         |
| Preparing Reaction Mix Components for PCR 2-2                |
| Preparation of Reagents 2-2                                  |
| Template                                                     |
| Reaction Mix Preparation 2-2                                 |
| PCR Using the TaqMan PCR Core Reagents                       |
| Overview                                                     |
| PCR Reaction Mix 2-3                                         |
| Thermal Cycling Parameters for PCR 2-4                       |
| Performing PCR Using the TaqMan Universal PCR Master Mix 2-5 |
| Overview                                                     |
| Using TaqMan Universal PCR Master Mix 2-5                    |
| Thermal Cycling Parameters for PCR 2-6                       |

## 3 RT-PCR

| Overview                                         |
|--------------------------------------------------|
| About This Chapter 3-1                           |
| In This Chapter                                  |
| Preparing Reaction Mix Components for RT-PCR 3-2 |
| Quantity of Total RNA 3-2                        |
| Preparation of Reagents 3-2                      |
| Reaction Mix Preparation 3-2                     |

| One-Step RT-PCR Using the TaqMan EZ RT-PCR Reagents | 3-3      |
|-----------------------------------------------------|----------|
| Overview                                            | 3-3      |
| Description of One-Step EZ RT-PCR                   |          |
| EZ Reaction Mix                                     |          |
| Reaction Preparation                                | 3-4      |
| Thermal Cycling for One-Step EZ RT-PCR              | 3-4      |
| One-Step RT-PCR Using the TaqMan Gold RT-PCR Kit    | 3-5      |
| Overview                                            | 3-5      |
| Description of One-Step Gold RT-PCR                 | 3-5      |
| Reducing Nonspecific Interactions                   | 3-5      |
| One-Step Reaction Mix                               | 3-6      |
| Reaction Preparation                                | 3-6      |
| Thermal Cycling for One-Step Gold RT-PCR            |          |
| One-Step RT-PCR Using the TaqMan One-Step RT-PCR    |          |
| Master Mix Reagents Kit                             | 3-8      |
| One-Step RT-PCR Protocol for 18S rRNA               | 3-8      |
| Thermal Cycling Parameters for use with One-Step    |          |
| RT-PCR Master Mix Reagent Kit                       | 3-8      |
| Two-Step RT-PCR Using the TaqMan Gold RT-PCR Kit    | 3-9      |
| Overview                                            | 3-9      |
| Incompatible Template                               | 3-9      |
| Template Quality                                    | 3-9      |
| Template Quantity                                   | 3-9      |
| Guidelines                                          | 3-10     |
| Preparing the Reactions                             | 3-10     |
| Thermal Cycling                                     | 3-13     |
| PCR Reaction Mix Using the TaqMan PCR Core Reagents |          |
| PCR Reaction Preparation                            | 3-14     |
| PCR Reaction Thermal Cycling Parameters             | 3-15     |
| PCR Reaction Mix Using TaqMan Universal PCR Master  | Mix 3-15 |
| PCR Reaction Preparation                            | 3-16     |
| PCR Reaction Thermal Cycling Parameters             | 3-16     |
|                                                     |          |

# 4 Data Analysis

| Overview                                             |
|------------------------------------------------------|
| About This Chapter 4-1                               |
| In This Chapter                                      |
| Preparing for Data Analysis 4-2                      |
| Changing the Baseline on the ABI PRISM               |
| Sequence Detection Systems                           |
| Low C <sub>T</sub> Values in No Template Control 4-4 |
| Interpreting the Results 4-5                         |
| Normalization 4-5                                    |
| Multicomponenting 4-5                                |
| $R_n$ and $\Delta R_n$ Values                        |
| Real-Time Detection 4-6                              |

# A Troubleshooting

## **B** References

## C Technical Support

| Services & Support          | . C- | -1 |
|-----------------------------|------|----|
| Applied Biosystems Web Site | . C- | -1 |

# 1

# Introduction

### Overview

| About This<br>Chapter | This chapter describes the TaqMan <sup>®</sup> Ribosomal RNA Control Reagents<br>and provides important information about safety and preventing<br>contamination. |          |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| In This Chapter       | The following topics are discussed in this chapter:                                                                                                               |          |
|                       | Торіс                                                                                                                                                             | See Page |
|                       | Purpose of the Kit                                                                                                                                                | 1-2      |
|                       | Materials and Equipment                                                                                                                                           | 1-6      |
|                       | Safety                                                                                                                                                            | 1-11     |
|                       | Preventing Contamination                                                                                                                                          | 1-14     |
|                       | L                                                                                                                                                                 |          |

# Purpose of the Kit

| About the Kit                      | The TaqMan Ribosomal RNA Control Reagents are designed to deter<br>the 18S ribosomal RNA (rRNA) gene. The amplicon generated from t<br>18S gene for both human RNA and DNA is 187 bp in length. The prim<br>and probe sequences contained in this kit are conserved among a<br>diverse group of eukaryotes including man, rat, mouse, <i>Xenopus</i> ,<br><i>Saccharomyces</i> , <i>Giardia</i> , Maize, and <i>Arabidopsis</i> .                                                                                                                  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                    | Ribosomal RNA levels provide an endogenous control for PCR quantitation studies. Refer to the <i>ABI PRISM 7700 Sequence Detection System User Bulletin #2: Relative Quantitation of Gene Expression</i> (P/N 4303859). For additional information on the use of rRNA as an endogenous control, refer to Bhatia, <i>et al.</i> , 1994; deLeeuw, <i>et al.</i> , 1989; Duhl, <i>et al.</i> , 1992.                                                                                                                                                  |  |
| Basics of the 5'<br>Nuclease Assay | The RT-PCR reaction exploits the 5 <sup>°</sup> nuclease activity of the AmpliTaq Gold <sup>®</sup> DNA Polymerase to cleave a TaqMan probe during PCR. The TaqMan probe contains a reporter dye at the 5 <sup>°</sup> end of the probe and a quencher dye at the 3 <sup>°</sup> end of the probe. During the reaction, the reporter dye and quencher dye become separated, resulting in increased fluorescence of the reporter. Accumulation of PCR products is detected directly by monitoring the increase in fluorescence of the reporter dye. |  |



**Figure 1-1** The fork-like-structure-dependent, polymerization associated, 5' to 3' nuclease activity of AmpliTaq Gold DNA Polymerase during PCR.

When the probe is intact, the proximity of the reporter dye to the quencher dye results in suppression of the reporter fluorescence primarily by Förster-type energy transfer (Förster, 1948; Lakowicz, 1983). During PCR, if the target of interest is present, the probe specifically anneals between the forward and reverse primer sites.

The 5<sup>'</sup> to 3<sup>'</sup> nucleolytic activity of the AmpliTaq Gold DNA Polymerase cleaves the probe between the reporter and the quencher only if the probe hybridizes to the target. The probe fragments are then displaced from the target, and polymerization of the strand continues. The 3<sup>'</sup> end of the probe is blocked to prevent extension of the probe during PCR.

This process occurs in every cycle and does not interfere with the exponential accumulation of product.



Figure 1-2 An overlay of three emission scans, post-PCR.

The increase in fluorescence signal is detected only if the target sequence is complementary to the probe and is amplified during PCR. Because of these requirements, nonspecific amplification is not detected.

| TaqMan Probe | The TaqMan probe consists of an oligonucleotide with a 5'-reporter d            |  |
|--------------|---------------------------------------------------------------------------------|--|
| -            | and a 3'-quencher dye. A fluorescent reporter dye, such as FAM <sup>™</sup> dye |  |
|              | is covalently linked to the 5° end of the oligonucleotide.                      |  |

TET<sup>™</sup> dye and VIC<sup>™</sup> dye have also been used as reporter dyes. Each of the reporters is quenched by TAMRA<sup>™</sup> dye, or non-fluorescent quencher attached via a linker arm that is usually located at the 3'end.

#### About This This protocol describes how to:

- Protocol ♦ Perform PCR using:
  - TaqMan<sup>®</sup> PCR Core Reagents
  - TaqMan<sup>®</sup> Universal PCR Master Mix
  - Perform one-step RT-PCR using:
    - TaqMan<sup>®</sup> EZ RT-PCR Core Reagents
    - TaqMan<sup>®</sup> Gold RT-PCR Reagents

#### 1-4 Introduction

- Perform two-step RT-PCR using TaqMan Gold RT-PCR Reagents and:
  - TaqMan PCR Core Reagents
  - TaqMan Universal PCR Master Mix
- Analyze and interpret data

Amplicon Size The amplicon generated from the 18S gene for both human RNA and DNA is 187 bp in length.

#### **Materials and Equipment**

**Kit Components** The TaqMan Ribosomal RNA Control Reagents (P/N 4308329) contain the probe and primers sufficient to perform one thousand 50-μL reactions. The kit includes the following components:

| Component                                     | Description                                                                                                                |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Ribosomal RNA Probe<br>(VIC <sup>™</sup> dye) | One tube containing 250 $\mu L$ of 40- $\mu M$ probe in TE buffer                                                          |
| Ribosomal RNA Forward<br>Primer               | One tube containing 250 $\mu L$ of 10- $\mu M$ primer in TE buffer                                                         |
| Ribosomal RNA Reverse<br>Primer               | One tube containing 250 $\mu L$ of 10- $\mu M$ primer in TE buffer                                                         |
| Control RNA (Human)                           | One tube containing 100 μL of 50-ng/μL of total<br>human Raji RNA in 10-mM Tris-HCl, pH 7.0,<br>100-mM NaCl, and 1-mM EDTA |

**IMPORTANT** The TaqMan<sup>®</sup> VIC<sup>™</sup> dye must be configured as a Pure Dye on the Sequence Detection Systems. Refer to the appropreate SDS User's Manual for generating new spectra components.

# PerformanceThe following performance specifications apply to the TaqManSpecificationsRibosomal RNA Control Reagents.

| Description                                             | Performance Specification                                               |
|---------------------------------------------------------|-------------------------------------------------------------------------|
| Detection limit of human Raji cell line                 | 100 femtograms of total RNA per 50- $\mu$ L reaction in two-step RT-PCR |
| Dynamic range of rRNA on the Sequence Detection Systems | Five orders of magnitude on the Sequence Detection Systems              |

Core Kits Supplied One of the TaqMan Core Reagent Kits listed in the following table is by the User required in addition to the reagents supplied in the TaqMan Ribosomal RNA Control Reagents.

| Application | TaqMan Core<br>Reagentsª                                         | Source                                |
|-------------|------------------------------------------------------------------|---------------------------------------|
| PCR         | TaqMan <sup>®</sup> PCR Core<br>Reagents                         | Applied Biosystems<br>(P/N N808-0228) |
|             | TaqMan <sup>®</sup> Universal PCR<br>Master Mix                  | Applied Biosystems<br>(P/N 4304437)   |
| RT-PCR      | TaqMan <sup>®</sup> Gold RT-PCR<br>Kit                           | Applied Biosystems<br>(P/N N808-0232) |
|             | TaqMan <sup>®</sup> EZ RT-PCR<br>Core Reagents                   | Applied Biosystems<br>(P/N N808-0236) |
|             | TaqMan <sup>®</sup> One-Step<br>RT-PCR Master Mix<br>Reagent Kit | Applied Biosystems<br>(P/N 4309169)   |
| RT          | TaqMan <sup>®</sup> Reverse<br>Transcription Reagents            | Applied Biosystems<br>(P/N N808-0234) |

a. See your local Applied Biosystems representative for a current listing of available reagents.

#### Materials **Required but Not** Supplied

The following items are required when using TaqMan Ribosomal RNA Control Reagents, but are not supplied. See the table for source information.

**User-Supplied Materials** 

| Item                                                         | Source                                                                 |
|--------------------------------------------------------------|------------------------------------------------------------------------|
| 7900HT Sequence Detection<br>System                          | See your local Applied Biosystems representative for the instrument or |
| 7700 Sequence Detection System                               | software best suited to meet your needs.                               |
| 7000 Sequence Detection System                               |                                                                        |
| Primer Express <sup>™</sup> software<br>(single-use license) | -                                                                      |

User-Supplied Materials (continued)

| Item                                                                      | Source                                |
|---------------------------------------------------------------------------|---------------------------------------|
| Sequence Detection primers                                                | Applied Biosystems                    |
| <ul> <li>Min 4000 pmol purified for<br/>sequence detection</li> </ul>     | ◆ P/N 4304970                         |
| <ul> <li>Min 40,000 pmol purified for<br/>sequence detection</li> </ul>   | ◆ P/N 4304971                         |
| <ul> <li>Min 130,000 pmol purified for<br/>sequence detection</li> </ul>  | ◆ P/N 4304972                         |
| TaqMan <sup>®</sup> MGB Probe                                             | Applied Biosystems                    |
| ◆ 5000–6000 pmoles                                                        | ◆ P/N 4316034                         |
| ♦ 15,000–25,000 pmoles                                                    | ◆ P/N 4316033                         |
| ♦ 50,000–100,000 pmoles                                                   | ◆ P/N 4316032                         |
| TaqMan <sup>®</sup> TAMRA Probe                                           | Applied Biosystems                    |
| ◆ 5000–6000 pmoles                                                        | ◆ P/N 450025                          |
| ♦ 15,000–25,000 pmoles                                                    | ◆ P/N 450024                          |
| ◆ 50,000-100,000 pmoles                                                   | ◆ P/N 450003                          |
| MicroAmp <sup>®</sup> Optical 96-Well<br>Reaction Plate and Optical Caps  | Applied Biosystems<br>(P/N 403012)    |
| MicroAmp <sup>®</sup> Optical 96-Well<br>Reaction Plate                   | Applied Biosystems<br>(P/N N801-0560) |
| ABI PRISM <sup>™</sup> 384-Well Clear Optical Reaction Plate with Barcode | Applied Biosystems<br>(P/N 4309849)   |
| Note The MicroAmp Optical 96-Well                                         | Reaction Plate may be sealed with:    |
| <ul> <li>MicroAmp Optical Caps</li> </ul>                                 |                                       |
| or                                                                        |                                       |
| ♦ ABI PRISM <sup>™</sup> Optical Adhesive Cove                            | r                                     |
| MicroAmp <sup>®</sup> Optical Caps                                        | Applied Biosystems<br>(P/N 4323032)   |
| $MicroAmp^{ embed{mp} embed{sharps}$ 96-well Tray/Retainer Set (10 sets)  | Applied Biosystems<br>(P/N 403081)    |

User-Supplied Materials (continued)

| Item                                                                                                                                             | Source                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| ABI PRISM Optical Adhesive Cover<br>Starter Pack containing 20 optical<br>adhesive covers, one applicator, and<br>one compression pad.           | Applied Biosystems<br>(P/N 4313663)   |
| <b>Note</b> The MicroAmp Optical<br>96-well Reaction Plate may be<br>sealed with MicroAmp Optical caps<br>or ABI PRISM Optical Adhesive<br>Cover |                                       |
| MicroAmp <sup>®</sup> Optical Tubes                                                                                                              | Applied Biosystems<br>(P/N N801-0933) |
| Sequence Detection Systems<br>Spectral Calibration Kit (for 7700<br>instrument only)                                                             | Applied Biosystems<br>(P/N 4305822)   |
| Sequence Detection Systems<br>384-Well Spectral Calibration Kit                                                                                  | Applied Biosystems<br>(P/N 4323977)   |
| ABI PRISM® 7900 Sequence<br>Detection Systems 96-Well Spectral<br>Calibration Kit                                                                | Applied Biosystems<br>(P/N 4328639)   |
| ABI PRISM® 7000 Sequence<br>Detection Systems Spectral<br>Calibration Kit                                                                        | Applied Biosystems<br>(P/N 4328895)   |
| Centrifuge with adapter for 96-well plate                                                                                                        | Major laboratory supplier (MLS)       |
| Disposable gloves                                                                                                                                | MLS                                   |
| Microcentrifuge                                                                                                                                  | MLS                                   |
| NuSieve 4% (3:1) agarose gels,<br>for DNA <1 kb                                                                                                  | FMC BioProducts<br>(P/N 54928)        |
| Pipette tips, with filter plugs                                                                                                                  | MLS                                   |
| Pipettors, positive-displacement or air-displacement                                                                                             | MLS                                   |
| Polypropylene tubes                                                                                                                              | MLS                                   |
| Tris-EDTA (TE) Buffer, pH 8.0                                                                                                                    | MLS                                   |
| Vortexer                                                                                                                                         | MLS                                   |

| Storage and | Upon receipt, store the TaqMan Ribosomal RNA Control Reagents at      |
|-------------|-----------------------------------------------------------------------|
| Stability   | –15 to –25 °C in a constant-temperature freezer. Store the product    |
| ·           | away from light. This product is light sensitive. If stored under the |
|             | recommended conditions, the product will maintain performance for one |
|             | year from time of receipt.                                            |

#### Safety

ie.

| Documentation<br>User Attention<br>Words | Five user attention words appear in the text of all Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below.                                                                               |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | Note Calls attention to useful information.                                                                                                                                                                                                                |
|                                          | <b>IMPORTANT</b> Indicates information that is necessary for proper instrument operation.                                                                                                                                                                  |
|                                          | <b>A CAUTION</b> Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.                                                                         |
|                                          | <b>WARNING</b> Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.                                                                                                                                 |
|                                          | <b>ADANCER</b> Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations.                                                                |
| Chemical Hazard<br>Warning               | AWARNING CHEMICAL HAZARD. Some of the chemicals used with<br>Applied Biosystems instruments and protocols are potentially hazardous and<br>can cause injury, illness, or death.                                                                            |
|                                          | <ul> <li>Read and understand the material safety data sheets (MSDSs)<br/>provided by the chemical manufacturer before you store, handle, or<br/>work with any chemicals or hazardous materials.</li> </ul>                                                 |
|                                          | <ul> <li>Minimize contact with chemicals. Wear appropriate personal<br/>protective equipment when handling chemicals (<i>e.g.</i>, safety<br/>glasses, gloves, or protective clothing). For additional safety<br/>guidelines, consult the MSDS.</li> </ul> |
|                                          | <ul> <li>Minimize the inhalation of chemicals. Do not leave chemical<br/>containers open. Use only with adequate ventilation (<i>e.g.</i>, fume<br/>hood). For additional safety guidelines, consult the MSDS.</li> </ul>                                  |
|                                          | <ul> <li>Check regularly for chemical leaks or spills. If a leak or spill occurs,<br/>follow the manufacturer's cleanup procedures as recommended on<br/>the MSDS.</li> </ul>                                                                              |
|                                          |                                                                                                                                                                                                                                                            |

• Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal.

| A WARNING CHEMICAL WASTE HAZARD. Wastes produced by                    |
|------------------------------------------------------------------------|
| Applied Biosystems instruments are potentially hazardous and can cause |
| م<br>ir                                                                |

|                                      | <ul> <li>Read and understand the material safety data sheets (MSDSs)<br/>provided by the manufacturers of the chemicals in the waste<br/>container before you store, handle, or dispose of chemical waste.</li> </ul>                                                                                                                                    |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | <ul> <li>Handle chemical wastes in a fume hood.</li> </ul>                                                                                                                                                                                                                                                                                               |
|                                      | Minimize contact with chemicals. Wear appropriate personal<br>protective equipment when handling chemicals ( <i>e.g.</i> , safety<br>glasses, gloves, or protective clothing). For additional safety<br>guidelines, consult the MSDS.                                                                                                                    |
|                                      | <ul> <li>Minimize the inhalation of chemicals. Do not leave chemical<br/>containers open. Use only with adequate ventilation (<i>e.g.</i>, fume<br/>hood). For additional safety guidelines, consult the MSDS.</li> </ul>                                                                                                                                |
|                                      | • After emptying the waste container, seal it with the cap provided.                                                                                                                                                                                                                                                                                     |
|                                      | <ul> <li>Dispose of the contents of the waste tray and waste bottle in<br/>accordance with good laboratory practices and local,<br/>state/provincial, or national environmental and health regulations.</li> </ul>                                                                                                                                       |
| Site Preparation<br>and Safety Guide | A site preparation and safety guide is a separate document sent to all customers who have purchased an Applied Biosystems instrument. Refer to the guide written for your instrument for information on site preparation, instrument safety, chemical safety, and waste profiles.                                                                        |
| About MSDSs                          | Some of the chemicals used with this instrument may be listed as hazardous by their manufacturer. When hazards exist, warnings are prominently displayed on the labels of all chemicals.                                                                                                                                                                 |
|                                      | Chemical manufacturers supply a current material safety data sheet<br>(MSDS) before or with shipments of hazardous chemicals to new<br>customers and with the first shipment of a hazardous chemical after an<br>MSDS update. MSDSs provide you with the safety information you<br>need to store, handle, transport and dispose of the chemicals safely. |
|                                      | We strongly recommend that you replace the appropriate MSDS in your files each time you receive a new MSDS packaged with a hazardous chemical.                                                                                                                                                                                                           |
|                                      | <b>A WARNING</b> CHEMICAL HAZARD. Be sure to familiarize yourself with the MSDSs before using reagents or solvents.                                                                                                                                                                                                                                      |

**Ordering MSDSs** You can order free additional copies of MSDSs for chemicals manufactured or distributed by Applied Biosystems using the contact information below

To order documents by automated telephone service:

| Step | Action                                                                  |
|------|-------------------------------------------------------------------------|
| 1    | From the U.S. or Canada, dial 1.800.487.6809.                           |
| 2    | Follow the voice instructions to order documents (for delivery by fax). |
|      | Note There is a limit of five documents per fax request.                |

To order documents by telephone:

| In the U.S. | Dial <b>1.800.345.5224</b> , and press <b>1</b> .                                   |
|-------------|-------------------------------------------------------------------------------------|
| In Canada   | Dial <b>1.800.668.6913</b> , and press <b>1</b> for English or <b>2</b> for French. |

To view, download, or order documents through the Applied Biosystems Web site:

| Step | Action                                                                                                                                                                             |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Go to http://www.appliedbiosystems.com                                                                                                                                             |
| 2    | Click SERVICES & SUPPORT at the top of the page, click <b>Documents on Demand</b> , then click <b>MSDS</b> .                                                                       |
| 3    | Click <b>MSDS Index</b> , search through the list for the chemical of interest to you, then click on the MSDS document number for that chemical to open a PDF version of the MSDS. |

For chemicals not manufactured or distributed by Applied Biosystems, call the chemical manufacturer.

#### **Preventing Contamination**

| Overview | Due to the high throughput and repetitive nature of the 5'nuclease  |
|----------|---------------------------------------------------------------------|
|          | assay, special laboratory practices are necessary in order to avoid |
|          | false-positive amplifications (Kwok and Higuchi, 1989).             |

**Hot Start PCR** To improve PCR specificity and sensitivity by controlling mispriming events, the Hot Start technique was introduced (Faloona *et al.*, 1990). Hot Start PCR is a simple modification of the original PCR process in which the amplification reaction is started at an elevated temperature. This was initially performed manually, by adding an essential component of the reaction to the reaction mixture only after that mixture had been heated to an elevated temperature. However, this approach was often cumbersome and time consuming, especially when using large numbers of samples.

**False Positives** Special laboratory practices are necessary in order to avoid false positive amplifications (Higuchi, *et al.*, 1989). This is because of the capability for single DNA molecule amplification provided by the PCR process (Saiki *et al.*, 1985; Mullis *et al.*, 1987; Saiki *et al.*, 1988). Because of the enormous amplification possible with PCR, amplicon carryover can result in sample contamination. Other sources of contamination could be from samples with high DNA levels or from positive control templates.

When dUTP replaces dTTP as a dNTP substrate in PCR and the method described below is used, AmpErase UNG treatment can prevent the reamplification of carryover PCR products in subsequent experiments Sninsky and Gelfand, pers. comm.) This method uses enzymatic and chemical reactions analogous to the restriction-modification and excision-repair systems of cells to degrade specifically PCR products from previous PCR amplifications or to degrade mis-primed, non-specific products produced prior to specific amplifications, but not degrade native nucleic acid templates.

The method used to make PCR products susceptible to degradation involves substituting dUTP for dTTP in the PCR mix and treating subsequent PCR mixes with the enzyme uracil N-glycosylase (UNG, EC 3.2.2-) prior to amplification (Longo *et al.*, 1990).

The AmpErase UNG provided in this product is a pure, nuclease-free, 26-kDa enzyme encoded by the *Escherichia coli* uracil N-glycosylase

| gene which has been inserted into an <i>E. coli</i> host to direct the expression of the native form of the enzyme (Higuchi <i>et al.</i> , 1989).                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Although the protocol and reagents described here are capable of degrading or eliminating large numbers of carried over PCR products, we encourage users to continue using the specific devices and suggestions described in this protocol booklet and in Kwok (1990) and Higuchi(1989) to minimize cross-contamination from non-dU-containing PCR products or other samples.                                                                                     |
| A ten minute hold cycle at 95 °C is necessary to cleave the dU-containing PCR products that are carried over from an earlier PCR. Because UNG is not completely deactivated during the 95 °C incubation, it is important to keep the reaction temperatures greater than 55 °C, to prevent amplicon degradation.                                                                                                                                                   |
| Use primers that contain dA nucleotides near the 3' ends so that any primer-dimer generated is efficiently degraded by AmpErase UNG at least as well as any dU-containing PCR products. The further a dA nucleotide is from the 3' end, the more likely that partially degraded primer-dimer molecules may serve as templates for a subsequent PCR amplification.                                                                                                 |
| Production of primer dimer could lower the amplification yield of the desired target region. If primers cannot be selected with dA nucleotides near the ends, the use of primers with 3' terminal dU-nucleotides should be considered. Single-stranded DNA with terminal dU nucleotides are not substrates for AmpErase UNG (Delort <i>et al.</i> , 1985) and thus the primers will not be degraded. Biotin-dUMP derivatives are not substrates for AmpErase UNG. |
| The concentration of AmpErase UNG and the time of the incubation step necessary to prevent amplification of contaminating dU-containing PCR product depends on the PCR conditions necessary to amplify your particular DNA sequence and the level of contamination expected. In most cases, using AmpErase UNG at 1 U/100 $\mu$ L reaction and incubation at 50 °C for two minutes is sufficient.                                                                 |
| Do not attempt to use AmpErase UNG in subsequent amplification of dU-containing PCR template, such as in nested-PCR protocols. The UNG will degrade the dU-containing PCR product, preventing further amplification.                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| UNG in Two-Step<br>Reactions | When two-step RT-PCR is performed with the TaqMan <sup>®</sup> Gold RT-PCR<br>Kit or the TaqMan <sup>®</sup> Universal Master Mix kit, AmpErase UNG treatment<br>can prevent the reamplification of carry-over PCR products. When<br>dUTP replaces dTTP during PCR amplification, AmpErase UNG<br>treatment can remove up to 200,000 copies of the carry-over rRNA<br>amplicon per 50-µL reaction. |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| UNG in One-Step<br>Reactions | AmpErase UNG can be used to remove amplicon contamination in<br>one-step RT-PCR when using the TaqMan EZ RT-PCR Core Reagents.<br>The rT <i>th</i> DNA Polymerase contained in the kit is thermally stable and is<br>used at temperatures at which Amperase UNG is inactive. Because<br>one-step EZ RT-PCR utilizes dUTP, amplicons generated during this<br>reaction contain uridine residues.    |  |  |  |
|                              | UNG cannot be used when one-step RT-PCR is performed using the TaqMan Gold RT-PCR Kit or the TaqMan <sup>®</sup> One-Step RT-PCR Master Mix Reagents Kit. UNG is active at the temperatures for reverse transcription. The active UNG enzyme would remove uracil bases that are incorporated into the newly synthesized complementary DNA (cDNA) strand.                                           |  |  |  |
|                              | If contamination is suspected from previous PCR runs, performing PCR with and without AmpErase UNG will help to identify the source of contamination. To do this, set up parallel No Template Control PCR reactions with and without UNG. A positive signal in the reaction without UNG indicates contamination of reaction components.                                                            |  |  |  |
| General PCR<br>Practices     | Certain laboratory practices are necessary in order to avoid false-positive amplifications (Kwok and Higuchi, 1989). This is because the PCR process is capable of amplifying single DNA molecules (Saiki <i>et al.</i> , 1985; Mullis and Faloona, 1987).                                                                                                                                         |  |  |  |
|                              | <ul> <li>Wear a clean lab coat (one never worn while handling amplified<br/>PCR products or doing sample preparation) and clean gloves when<br/>preparing samples for PCR amplification.</li> </ul>                                                                                                                                                                                                |  |  |  |
|                              | <ul> <li>Change gloves whenever contamination is possible.</li> </ul>                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                              | • Maintain separate areas and dedicated equipment and supplies for:                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                              | <ul> <li>Sample preparation</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                              | <ul> <li>PCR setup</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                              | <ul> <li>PCR amplification and detection</li> </ul>                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

- Never bring amplified PCR products into the PCR setup area.
- Open and close all sample tubes carefully. Try not to splash or spray PCR samples.
- Keep reactions and components capped as much as possible.
- Clean lab benches and equipment regularly with 10% bleach solution.

Fluorescent Since fluorescent contaminants may interfere with this assay and give false-positive results, it may be necessary to include a No Amplification Control tube that contains sample and no enzyme. If the absolute fluorescence of the No Amplification Control is greater than that of the No Template Control after PCR, fluorescent contaminants may be present in the sample or in the heat block of the thermal cycler.



# **Performing PCR**

#### Overview

| <b>About This</b> | This chapter describes two methods for performing PCR:                |          |
|-------------------|-----------------------------------------------------------------------|----------|
| Chapter           | <ul> <li>Using TaqMan<sup>®</sup> PCR Core Reagents</li> </ul>        |          |
|                   | <ul> <li>Using TaqMan<sup>®</sup> Universal PCR Master Mix</li> </ul> |          |
| In This Chapter   | The following topics are discussed in this chapter:                   |          |
|                   | Торіс                                                                 | See Page |
|                   | Preparing Reaction Mix Components for PCR                             | 2-2      |
|                   | PCR Using the TaqMan PCR Core Reagents                                | 2-3      |
|                   | Performing PCR Using the TaqMan Universal PCR Master Mix              | 2-5      |

# **Preparing Reaction Mix Components for PCR**

| Preparation of<br>Reagents  | Prior to use, thaw all of the reagents at room temperature except the<br>enzymes. After the reagents are thawed, place them on ice. Keep the<br>enzymes in a freezer until immediately prior to use.<br>After thawing, mix the kit components, except the enzymes, by<br>vortexing and using a microcentrifuge to briefly spin down the tube<br>contents. Mix the enzymes by gentle inversion of the tube. Protect the<br>fluorescent dye-labeled probe from excessive exposure to light. |                                                                                                                                                                                                                                                                                    |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |  |  |
| Template                    | The tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | plate used in PCR reactions is DNA or cDNA.                                                                                                                                                                                                                                        |  |  |
| Reaction Mix<br>Preparation | Preparing a Reaction Mix of PCR components is recommended in order<br>to increase the accuracy of the results. Using a Reaction Mix reduces<br>the number of reagent transfers and minimizes volume loss due to<br>pipetting.                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                    |  |  |
|                             | Step Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |  |  |
|                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prepare Reaction Mix by combining all the nonenzymatic components listed in the appropriate table.                                                                                                                                                                                 |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>CAUTION</b> CHEMICAL HAZARD. AmpErase(R) uracil<br><i>N</i> -glycosylase may cause eye and skin irritation. Read the MSDS,<br>and follow the handling instructions. Wear appropriate protective<br>eyewear, clothing, and gloves.                                               |  |  |
|                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mix the components by pipetting up and down.                                                                                                                                                                                                                                       |  |  |
|                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vortex briefly.                                                                                                                                                                                                                                                                    |  |  |
|                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Add the enzymatic components (for example: AmpliTaq Gold <sup>®</sup> DNA Polymerase) listed for the appropriate reaction mix.                                                                                                                                                     |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>CAUTION</b> CHEMICAL HAZARD. AmpliTaq Gold DNA<br>Polymerase may cause eye and skin irritation. Exposure may<br>cause discomfort if swallowed or inhaled. Read the MSDS, and<br>follow the handling instructions. Wear appropriate protective<br>eyewear, clothing, and gloves. |  |  |
|                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mix the components by inverting the microcentrifuge tube.                                                                                                                                                                                                                          |  |  |

#### PCR Using the TaqMan PCR Core Reagents

**Overview** PCR can be performed using DNA templates with the TaqMan PCR Core Reagents (P/N N808-0228). Follow the instructions described in the *TaqMan PCR Reagent Kit Protocol* (P/N 402823).

**PCR Reaction Mix** The ingredients of a 50-μL reaction, PCR Reaction Mix are listed in the table below. To make the PCR Reaction Mix, follow the instructions described in "Reaction Mix Preparation" on page 2-2.

**CAUTION** CHEMICAL HAZARD. TaqMan PCR Core Reagents may cause eye and skin irritation. They may cause discomfort if swallowed or inhaled. Always use adequate ventilation such as that provided by a fume hood. Please read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

PCR Reaction Mix

|                                                         | Volume/Tube            | Final         |
|---------------------------------------------------------|------------------------|---------------|
| Component                                               | (μ <b>L)</b>           | Concentration |
| RNase-free water                                        | See below <sup>a</sup> |               |
| 10X TaqMan <sup>®</sup> PCR Buffer A                    | 5.0                    | 1X            |
| 25 mM Magnesium Chloride                                | 11.0                   | 5.5 mM        |
| 10 mM deoxyATP                                          | 1.0                    | 200 µM        |
| 10 mM deoxyCTP                                          | 1.0                    | 200 µM        |
| 10 mM deoxyGTP                                          | 1.0                    | 200 µM        |
| 20 mM deoxyUTP                                          | 1.0                    | 400 μM        |
| 10 μM Ribosomal RNA Forward<br>Primer                   | 0.25                   | 50 nM         |
| 10 μM Ribosomal RNA Reverse<br>Primer                   | 0.25                   | 50 nM         |
| 40 μM Ribosomal RNA Probe (VIC™<br>dye)                 | 0.25                   | 200 nM        |
| AmpErase <sup>®</sup> UNG (1 U/µL)                      | 0.5                    | 0.01 U/μL     |
| AmpliTaq Gold <sup>®</sup> DNA<br>Polymerase (5.0 U/μL) | 0.25                   | 0.025 U/μL    |
| Total                                                   | 21.5                   |               |

a. The volume of RNase-free water will be (28.5  $\mu$ L – DNA sample volume).

# Parameters for

Thermal Cycling Use the following thermal cycling parameters for PCR:

## PCR

ie.

| Step   | UNG<br>Activation | AmpliTaq<br>Gold<br>Activation | PCI       | २                 |
|--------|-------------------|--------------------------------|-----------|-------------------|
|        | HOLD              | HOLD                           | CYCLE (40 | ) cycles)         |
|        |                   |                                | Denature  | Anneal/<br>Extend |
| Temp   | 50 °C             | 95 °C                          | 95 °C     | 60 °C             |
| Time   | 2 min             | 10 min                         | 15 sec    | 1 min             |
| Volume |                   |                                | 50 μL     |                   |

**IMPORTANT** The 2-min, 50 °C step is required for optimal UNG enzyme activity. The 10-min, 95 °C step is required to activate AmpliTaq Gold DNA Polymerase.

# Performing PCR Using the TaqMan Universal PCR Master Mix

| Overview                                    | PCR can be performed using DNA templates with the TaqMan<br>Universal PCR Master Mix (P/N 4304437). Follow the instructions<br>described in the <i>TaqMan Universal PCR Master Mix Protocol</i><br>(P/N 4304449).                                                                                                                                            |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Using TaqMan<br>Universal PCR<br>Master Mix | The ingredients of a 50- $\mu$ L reaction, PCR Reaction Mix using the TaqMan Universal PCR Master Mix are listed in the table below.                                                                                                                                                                                                                         |
|                                             | <b>CAUTION</b> CHEMICAL HAZARD. TaqMan Universal PCR Master Mix<br>may cause eye and skin irritation. It may cause discomfort if swallowed or<br>inhaled. Always use adequate ventilation such as that provided by a fume hood.<br>Please read the MSDS, and follow the handling instructions. Wear appropriate<br>protective eyewear, clothing, and gloves. |

| Component                                     | Volume/Tube            | Final         |
|-----------------------------------------------|------------------------|---------------|
| Component                                     | (μ <b>⊑</b> )          | Ouncentration |
| RNase-free water                              | See below <sup>a</sup> | —             |
| TaqMan <sup>®</sup> Universal PCR Master Mix  | 25.0                   | 1X            |
| 10 μM Ribosomal RNA Forward<br>Primer         | 0.25                   | 50 nM         |
| 10 μM Ribosomal RNA Reverse<br>Primer         | 0.25                   | 50 nM         |
| 40 μM Ribosomal RNA Probe (VIC <sup>™</sup> ) | 0.25                   | 200 nM        |
| Total                                         | 25.75                  |               |

a. The volume of RNase-free water will be (24.25  $\mu L$  – DNA sample volume).

# Parameters for

Thermal Cycling Use the following thermal cycling parameters for PCR:

### PCR

ie.

| Step   | UNG<br>Activation | AmpliTaq<br>Gold<br>Activation | PCI       | R                 |
|--------|-------------------|--------------------------------|-----------|-------------------|
|        | HOLD              | HOLD                           | CYCLE (40 | ) cycles)         |
|        |                   |                                | Denature  | Anneal/<br>Extend |
| Temp   | 50 °C             | 95 °C                          | 95 °C     | 60 °C             |
| Time   | 2 min             | 10 min                         | 15 sec    | 1 min             |
| Volume |                   |                                | 50 μL     |                   |

IMPORTANT The 2-min, 50 °C step is required for optimal AmpErase UNG enzyme activity. The 10-min, 95 °C step is required to activate AmpliTaq Gold DNA Polymerase.

# RT-PCR

# 3

## Overview

| <b>About This</b>                                                                                                                         | This chapter describes several methods for performing RT-PCR:               |          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|--|--|--|
| Chapter                                                                                                                                   | Chapter   One-step                                                          |          |  |  |  |
| <ul> <li>Using TaqMan<sup>®</sup> EZ RT-PCR Core Reagents</li> </ul>                                                                      |                                                                             |          |  |  |  |
|                                                                                                                                           | <ul> <li>Using TaqMan<sup>®</sup> Gold RT-PCR Reagents</li> </ul>           |          |  |  |  |
| <ul> <li>TaqMan One-Step RT-PCR Master Mix Reagents Kit</li> </ul>                                                                        |                                                                             |          |  |  |  |
|                                                                                                                                           | <ul> <li>Two-step using TaqMan<sup>®</sup> Gold RT-PCR Kit and</li> </ul>   |          |  |  |  |
|                                                                                                                                           | <ul> <li>TaqMan<sup>®</sup> PCR Core Reagents</li> </ul>                    |          |  |  |  |
|                                                                                                                                           | <ul> <li>TaqMan<sup>®</sup> Universal PCR Master Mix</li> </ul>             |          |  |  |  |
| If you are performing PCR instead, see Chapter 2, "Performing PCR.<br>In This Chapter The following topics are discussed in this chapter: |                                                                             |          |  |  |  |
|                                                                                                                                           | Торіс                                                                       | See Page |  |  |  |
|                                                                                                                                           | Preparing Reaction Mix Components for RT-PCR                                | 3-2      |  |  |  |
|                                                                                                                                           | One-Step RT-PCR Using the TaqMan EZ RT-PCR Reagents                         | 3-3      |  |  |  |
|                                                                                                                                           | One-Step RT-PCR Using the TaqMan Gold RT-PCR Kit                            | 3-5      |  |  |  |
|                                                                                                                                           | One-Step RT-PCR Using the TaqMan One-Step RT-PCR<br>Master Mix Reagents Kit | 3-8      |  |  |  |
|                                                                                                                                           | Two-Step RT-PCR Using the TaqMan Gold RT-PCR Kit                            | 3-9      |  |  |  |

# **Preparing Reaction Mix Components for RT-PCR**

| Quantity of Total<br>RNA    | The number of reactions depends upon the plate set up by the user.<br>Between 100 fg and 10 ng of total RNA may be used for a one-step<br>RT-PCR reaction. The No Template Control reaction is the complete<br>RT-PCR formulation without the target RNA. |                                                                                                                                                                                                                                                                                  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Preparation of<br>Reagents  | Prior to use, thaw all or the reagents at room temperature except the enzymes and the RNase Inhibitor. After the reagents are thawed, place them on ice. Keep the enzymes in a freezer until immediately prior to use.                                    |                                                                                                                                                                                                                                                                                  |  |  |
|                             | After tha<br>Inhibitor,<br>the tube<br>inversion<br>excessiv                                                                                                                                                                                              | wing, mix the kit components, except the enzymes and RNase<br>by vortexing and using a microcentrifuge to briefly spin down<br>contents. Mix the enzymes and RNase Inhibitor by gentle<br>n of the tube. Protect the fluorescent dye-labeled probe from<br>we exposure to light. |  |  |
| Reaction Mix<br>Preparation | Preparing a Reaction Mix of RT-PCR components is recommended in<br>order to increase the accuracy of the results. The use of a Reaction Mix<br>reduces the number of reagent transfers and minimizes volume loss<br>due to pipetting.                     |                                                                                                                                                                                                                                                                                  |  |  |
|                             | Step                                                                                                                                                                                                                                                      | Action                                                                                                                                                                                                                                                                           |  |  |
|                             | 1                                                                                                                                                                                                                                                         | Prepare Reaction Mix by combining all the nonenzymatic components listed in the appropriate table.                                                                                                                                                                               |  |  |
|                             | 2                                                                                                                                                                                                                                                         | Mix the components by pipetting up and down.                                                                                                                                                                                                                                     |  |  |
|                             | 3 Vortex briefly.                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |  |  |
|                             | 4                                                                                                                                                                                                                                                         | Add the enzymatic components and RNase Inhibitor (for example:<br>AmpliTaq Gold <sup>®</sup> DNA Polymerase, MultiScribe <sup>™</sup> Reverse<br>Transcriptase, RNase Inhibitor, or r <i>Tth</i> DNA Polymerase for EZ<br>RT-PCR) listed for the appropriate reaction mix.       |  |  |
|                             | 5                                                                                                                                                                                                                                                         | Mix the components by inverting the microcentrifuge tube.                                                                                                                                                                                                                        |  |  |

#### **One-Step RT-PCR Using the TaqMan EZ RT-PCR Reagents**

| Overview | RT-PCR can be performed using RNA templates with the TaqMan EZ |
|----------|----------------------------------------------------------------|
|          | RT-PCR Core Reagents (P/N N808-0236). Follow the instructions  |
|          | described in the TaqMan EZ RT-PCR Kit Protocol (P/N 402877).   |

Description of<br/>One-Step EZ<br/>RT-PCROne-step EZ RT-PCR is RT as well as PCR in a single buffer system<br/>using the r*Tth* DNA polymerase enzyme for both steps. The reaction<br/>proceeds without the addition of reagents between the RT and PCR<br/>steps. This offers the convenience of a single-tube preparation for RT<br/>and PCR amplification. The carryover prevention enzyme, AmpErase®<br/>uracil-N-glycosylase (UNG), can be used with one-step RT-PCR using<br/>the TaqMan EZ RT-PCR Core Reagents.

EZ Reaction Mix The ingredients used for a 50-µL RT-PCR reaction mix.

EZ Reaction Mix

|                                        | Volume/Tube            | Final         |
|----------------------------------------|------------------------|---------------|
| Component                              | (μ <b>L)</b>           | Concentration |
| RNase-free water                       | See below <sup>a</sup> | _             |
| 5X TaqMan <sup>®</sup> EZ Buffer       | 10.0                   | 1X            |
| 25 mM Manganese Acetate                | 11.0                   | 5.5 mM        |
| 10 mM deoxyATP                         | 1.5                    | 300 μM        |
| 10 mM deoxyCTP                         | 1.5                    | 300 μM        |
| 10 mM deoxyGTP                         | 1.5                    | 300 μM        |
| 20 mM deoxyUTP                         | 1.5                    | 600 μM        |
| 10 μM Ribosomal RNA Forward<br>Primer  | 0.25                   | 50 nM         |
| 10 μM Ribosomal RNA Reverse<br>Primer  | 0.25                   | 50 nM         |
| 40 μM Ribosomal RNA Probe (VIC™)       | 0.25                   | 200 nM        |
| AmpErase <sup>®</sup> UNG (1 U/µL)     | 0.5                    | 0.01 U/µL     |
| r <i>Tth</i> DNA Polymerase (2.5 U/µL) | 2.0                    | 0.1 U/μL      |
| Total                                  | 30.25                  | —             |

a. The volume of RNase-free water will be (19.75  $\mu$ L – RNA sample volume).

**Note** To run a control sample, dilute the Control RNA (Human) 1:50 using RNase-free water. Use  $1 \ \mu L$  of the diluted RNA in the reaction.

# Preparation

Reaction For a description of how to prepare the reaction, refer to the TaqMan EZ RT-PCR Kit Protocol (P/N 402877).

#### Thermal Cycling for One-Step EZ RT-PCR

The following thermal cycling parameters are optimized for the Ribosomal RNA system. See thermal cycler manuals for details on operation.

| Step   | UNG<br>Activation | Reverse<br>Transcription | UNG<br>Deactivation | PC       | R                 |
|--------|-------------------|--------------------------|---------------------|----------|-------------------|
|        | HOLD              | HOLD                     | HOLD                | CYCLE (4 | 0 cycles)         |
|        |                   |                          |                     | Denature | Anneal/<br>Extend |
| Temp   | 50 °C             | 60 °C                    | 95 °C               | 94 °C    | 60 °C             |
| Time   | 2 min             | 30 min                   | 5 min               | 15 sec   | 1 min             |
| Volume |                   |                          | 50 μL               |          |                   |

**IMPORTANT** The 2-min, 50 °C step is required for optimal AmpErase UNG enzyme activity.

# **One-Step RT-PCR Using the TaqMan Gold RT-PCR Kit**

| Overview                                  | RT-PCR can be performed using RNA templates with the TaqMan Gol RT-PCR Kit (P/N N808-0232). Follow the instructions in the <i>TaqMan Gold RT-PCR Kit Protocol</i> (P/N 402876).                                                                                                                                                                                                                   |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                           | The TaqMan Gold RT-PCR Kit can be used to perform one-step or two-step RT-PCR.                                                                                                                                                                                                                                                                                                                    |  |  |
| Description of<br>One-Step Gold<br>RT-PCR | One-step Gold RT-PCR is RT as well as PCR in a single buffer system.<br>The reaction proceeds without the addition of reagents between the RT<br>and PCR steps. This offers the convenience of a single-tube<br>preparation for RT and PCR amplification. However, the carryover<br>prevention enzyme, AmpErase UNG cannot be used with one-step<br>RT-PCR when using the TaqMan Gold RT-PCR Kit. |  |  |
| Reducing<br>Nonspecific<br>Interactions   | This protocol requires an initial incubation of the reaction mixture for 30 minutes at 48 °C (see page 3-7). This RT step co-incubates the PCR primers and TaqMan® probes at a temperature well below their annealing temperatures. This incubation will lead to non-specific interactions between the primers, probe, and template for this target.                                              |  |  |
|                                           | To minimize the level of these non-specific interactions in one-step RT-PCR using the TaqMan Gold RT-PCR kit, use the Ribosomal RNA TaqMan probe at a concentration of 50 nM. This probe concentration allows accurate determination of $C_T$ values.                                                                                                                                             |  |  |
|                                           | Note that for multiplex applications in which a second target is run in the same well, a robust amplification for this second target can affect the multicomponenting accuracy around the ribosomal RNA reaction end-point. This will have no effect on accurate determination of the $C_T$ values for either target.                                                                             |  |  |

#### **One-Step** The ingredients for a 50-µL RT-PCR reaction mix using the TaqMan Gold RT-PCR Kit are listed in the table below. **Reaction Mix**

**One-Step Reaction Mix** 

|                                                       | Volume/Tube            | Final         |
|-------------------------------------------------------|------------------------|---------------|
| Component                                             | (μ <b>L)</b>           | Concentration |
| RNase-free water                                      | See below <sup>a</sup> | —             |
| 10X TaqMan <sup>®</sup> Buffer A                      | 5.0                    | 1X            |
| 25 mM Magnesium Chloride                              | 11.0                   | 5.5 mM        |
| 10 mM deoxyATP                                        | 1.5                    | 300 µM        |
| 10 mM deoxyCTP                                        | 1.5                    | 300 μM        |
| 10 mM deoxyGTP                                        | 1.5                    | 300 μM        |
| 20 mM deoxyUTP                                        | 1.5                    | 600 μM        |
| 10 µM Ribosomal RNA Forward Primer                    | 0.25                   | 50 nM         |
| 10 µM Ribosomal RNA Reverse Primer                    | 0.25                   | 50 nM         |
| 40 μM Ribosomal RNA Probe (VIC™)                      | 0.0625 <sup>b</sup>    | 50 nM         |
| RNase Inhibitor (20 U/µL)                             | 1.0                    | 0.4 U/μL      |
| MultiScribe™ Reverse Transcriptase<br>(50 U/μL)       | 0.25                   | 0.25 U/μL     |
| AmpliTaq Gold <sup>®</sup> DNA Polymerase<br>(5 U/μL) | 0.25                   | 0.025 U/μL    |
| Total                                                 | 24.0625                | _             |

a. The volume of RNase-free water will be (25.94 µL – RNA sample volume).

b. For reaction mixtures using this probe reagent it is recommended to start from a 1:10 dilution of the stock probe solution.

**Note** To run a control sample, dilute the Control RNA (human) 1:50 using RNase-free water. Use 1  $\mu$ L of the diluted RNA in the reaction.

# **Preparation**

**Reaction** For a description of how to prepare the reaction, refer to the *TaqMan* Gold RT-PCR Kit Protocol (P/N 402876).

#### Thermal Cycling for One-Step Gold RT-PCR

The following thermal cycling parameters are optimized for the one-step RT-PCR for the Ribosomal RNA system. See thermal cycler manuals for details on operation.

|        |        | AmpliTaq<br>Gold |                   |                   |
|--------|--------|------------------|-------------------|-------------------|
| Step   | RT     | Activation       | PC                | CR                |
|        | HOLD   | HOLD             | CYCLE (40 cycles) |                   |
|        |        |                  | Denature          | Anneal/<br>Extend |
| Temp   | 48 °C  | 95 °C            | 95 °C             | 60 °C             |
| Time   | 30 min | 10 min           | 15 sec            | 1 min             |
| Volume | 50 μL  |                  |                   |                   |

**IMPORTANT** The 10-min, 95 °C step is required to activate AmpliTaq Gold DNA Polymerase.

## One-Step RT-PCR Using the TaqMan One-Step RT-PCR Master Mix Reagents Kit

| <b>One-Step RT-PCR</b> | The protocol for one-step 18S rRNA is listed below. |
|------------------------|-----------------------------------------------------|
| Protocol for 18S       |                                                     |
| rRNA                   |                                                     |

| Reaction Component                      | Volume per Reaction<br>(μL) | Volume per 100<br>Reactions (μL) | Final Value           |
|-----------------------------------------|-----------------------------|----------------------------------|-----------------------|
| 2X Master Mix without UNG               | 25                          | 2500                             | 1X                    |
| 40X MultiScribe and RNase Inhibitor Mix | 1.25                        | 125                              | 0.25 U/μL<br>0.4 U/μL |
| Forward primer                          | Variable                    | Variable                         | 50 to 900 nM          |
| Reverse primer                          | Variable                    | Variable                         | 50 to 900 nM          |
| TaqMan probe, 25 μM                     | Variable                    | Variable                         | 250nM                 |
| RNA sample, 50 ng                       | Variable                    | Variable                         | 10 pg to 10 ng        |
| Water                                   | Variable                    | Variable                         | _                     |
| Total                                   | 50                          | 5000                             | _                     |

Thermal Cycling Parameters for Use with One-Step RT-PCR Master Mix Reagent Kit

| Step   | RT     | AmpliTaq<br>Gold<br>Activation | PC        | R                 |
|--------|--------|--------------------------------|-----------|-------------------|
|        | HOLD   | HOLD                           | Cycle (40 | ) cycles)         |
|        |        |                                | Denature  | Anneal/<br>Extend |
| Temp   | 48 °C  | 95 °C                          | 95 °C     | 60 °C             |
| Time   | 30 min | 10 min                         | 15 sec    | 1 min             |
| Volume |        | 50 μL                          |           |                   |

#### Two-Step RT-PCR Using the TaqMan Gold RT-PCR Kit

| Overview | Synthesis of cDNA from total RNA samples is the first step in the        |
|----------|--------------------------------------------------------------------------|
|          | two-step RT-PCR gene expression quantification experiment. In this       |
|          | step, random hexamers from the TaqMan <sup>®</sup> Reverse Transcription |
|          | Reagents (P/N N808-0234) prime total RNA samples for reverse             |
|          | transcription using MultiScribe Reverse Transcriptase.                   |

#### Incompatible The following table lists the known template incompatibilities: Template Explanation

| Template | Explanation                                                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poly A⁺  | The 18S rRNA endogenous control assay cannot accurately evaluate cDNA generated from poly A <sup>+</sup> RNA samples because most of the rRNA has been removed from them. |

**Template Quality** The quality of your results is directly related to the purity of your RNA template. Therefore, use only well-purified samples for synthesis of 18S rRNA. Because ribonuclease and genomic DNA contamination are common problems in gene expression studies, purify your samples accordingly to ensure the best results.

**Template Quantity** If possible, use spectrophotometric analysis to determine the concentrations of purified total RNA samples before reverse transcription. The table below lists the recommended range of initial template quantities for the reverse transcription (RT) step.

| Initial Template | Quantity of total RNA (per 100- $\mu$ L RT reaction) |
|------------------|------------------------------------------------------|
| Total RNA        | 60 ng to 2 µg                                        |

Guidelines Follow the guidelines below to ensure optimal RT performance:

- A 100-μL RT reaction will efficiently convert a maximum of 2 μg total RNA to cDNA. Perform multiple RT reactions in multiple wells if using more than 2 μg total RNA.
- Use only random hexamers to reverse transcribe the total RNA samples for gene expression assays.

# Preparing the Reactions The following procedure describes the preparation of four different test samples for reverse transcription. Scale the recommended volumes accordingly for the number of samples needed using the TaqMan Reverse Transcription Reagents (P/N N808-0234).

**CAUTION** CHEMICAL HAZARD. TaqMan Reverse Transcription Reagents may cause eye and skin irritation. They may cause discomfort if swallowed or inhaled. Always use adequate ventilation such as that provided by a fume hood. Please read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves. To prepare the reverse transcription reactions:

| Step | Action                                                                                                                                                                               |                               |                                |                        |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|------------------------|--|
| 1    | In a 0.2-mL microcentrifuge tube, prepare a reaction mix for all total RNA samples to be reverse transcribed. If preparing four samples, follow the recommended volumes shown below. |                               |                                |                        |  |
|      | Volume (μL)                                                                                                                                                                          |                               |                                |                        |  |
|      | Component                                                                                                                                                                            | Per<br>Sample                 | Reaction<br>Mix (x4)           | Final<br>Concentration |  |
|      | RNase-free water                                                                                                                                                                     | See<br>below <sup>a</sup>     | See<br>below <sup>a</sup>      | _                      |  |
|      | 10X RT Buffer                                                                                                                                                                        | 1.0                           | 4.0                            | 1X                     |  |
|      | $25 \text{ mM MgCl}_2$                                                                                                                                                               | 2.2                           | 8.8                            | 5.5 mM                 |  |
|      | deoxyNTPs2.08.0500 µMixtureper dN                                                                                                                                                    |                               |                                |                        |  |
|      | Random hexamers (50 $\mu$ M)                                                                                                                                                         | 2.0                           | 2.5 μΜ                         |                        |  |
|      | RNase Inhibitor<br>(20 U/µL)                                                                                                                                                         | 0.2                           | 0.8                            | 0.4 U/µL               |  |
|      | MultiScribe™<br>Reverse<br>Transcriptase<br>(50 U/μL)                                                                                                                                | 0.625                         | 2.5                            | 3.125 U/μL             |  |
|      | Total <sup>b</sup>                                                                                                                                                                   | 6.525                         | 26.1                           | —                      |  |
|      | a. The volume of RNase-free water ( $\mu$ L) will be 3.475–RNA sample volume in a 10- $\mu$ L reaction.                                                                              |                               |                                |                        |  |
|      | <ul> <li>b. If changing the reaction<br/>consistent with the rec</li> </ul>                                                                                                          | n volume, mak<br>ommended val | e sure the final<br>ues above. | proportions are        |  |
|      | <b>Note</b> RT volume can vary from 10 $\mu$ L to 100 $\mu$ L. Increasing the RT volume will reduce the total number of reactions.                                                   |                               |                                |                        |  |
| 2    | Label four 0.2-mL microcentrifuge tubes for the four test samples.                                                                                                                   |                               |                                |                        |  |
| 3    | Transfer 60 ng to 2 $\mu$ g (up to 3.475 $\mu$ L) of each total RNA sample to the corresponding microcentrifuge tube.                                                                |                               |                                |                        |  |
| 4    | If necessary, dilute each total RNA sample to a volume of 3.475 $\mu L$ with RNase-free, deionized water.                                                                            |                               |                                |                        |  |
| 5    | Cap the tubes and gently tap each to mix the diluted samples.                                                                                                                        |                               |                                |                        |  |
| 6    | Briefly centrifuge the tubes to eliminate air bubbles in the mixture.                                                                                                                |                               |                                |                        |  |

To prepare the reverse transcription reactions: *(continued)* 

| Step | Action                                                                                                                                          |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7    | Label four 0.2-mL MicroAmp <sup>®</sup> Reaction Tubes for the four total RNA test samples.                                                     |  |  |
| 8    | Pipet 6.525 $\mu$ L of the reaction mix (from step 1) to each MicroAmp Reaction Tube (from step 7).                                             |  |  |
|      | • 10X RT buffer     • MgCl <sub>2</sub> • dNTPs mixture     • Random hexamers     • MultiScribe reverse     transcriptase     • RNase inhibitor |  |  |
|      | 6.525 μL 6.525 μL 6.525 μL 6.525 μL                                                                                                             |  |  |
|      |                                                                                                                                                 |  |  |
|      | Sample 1 Sample 2 Sample 3 Sample 4                                                                                                             |  |  |
| 9    | Transfer 3.475 μL of each dilute total RNA sample to the corresponding MicroAmp Reaction Tube.                                                  |  |  |
| 10   | Cap the reaction tubes and gently tap each to mix the reactions.                                                                                |  |  |
| 11   | Briefly centrifuge the tubes to force the solution to the bottom and to eliminate air bubbles from the mixture.                                 |  |  |
| 12   | Transfer each reaction to:                                                                                                                      |  |  |
|      | <ul> <li>MicroAmp<sup>®</sup> Optical Tubes<br/>or</li> </ul>                                                                                   |  |  |
|      | ◆ Wells of a MicroAmp <sup>®</sup> Optical 96-well or 384-well Reaction Plate                                                                   |  |  |
| 13   | Cap the tubes or plate with MicroAmp® Optical Caps.                                                                                             |  |  |
| 14   | Centrifuge the tubes or plate to spin down the contents and eliminate air bubbles from the solutions.                                           |  |  |

#### 3-12 RT-PCR

ic.

# Thermal Cycling To perform reverse transcription thermal cycling:

| Step | Action                                                                                                                                                                 |        |        |       |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|--|--|
| 1    | Load the reactions into a thermal cycler.                                                                                                                              |        |        |       |  |  |
| 2    | Program your thermal cycler with the following conditions:                                                                                                             |        |        |       |  |  |
|      | StepHexamerReverseIncubationaRTInactivation                                                                                                                            |        |        |       |  |  |
|      | HOLD HOLD HOLD                                                                                                                                                         |        |        |       |  |  |
|      | Temp                                                                                                                                                                   | 25 °C  | 37 °C  | 95 °C |  |  |
|      | Time                                                                                                                                                                   | 10 min | 60 min | 5 min |  |  |
|      | Volume                                                                                                                                                                 | 10 μL  |        |       |  |  |
|      | a. When using random hexamers for first-strand cDNA synthesis, a primer<br>incubation step (25 °C for 10 min) is necessary to maximize primer-RNA<br>template binding. |        |        |       |  |  |
| 3    | Begin reverse transcription.                                                                                                                                           |        |        |       |  |  |
|      | <b>IMPORTANT</b> After thermal cycling, store all cDNA samples at $-15$ to $-25$ °C.                                                                                   |        |        |       |  |  |

#### PCR Reaction Mix Using the TaqMan PCR Core Reagents

The ingredients of a 50-µL PCR reaction are listed below.

**ACAUTION** CHEMICAL HAZARD. TaqMan PCR Core Reagents may cause eye and skin irritation. They may cause discomfort if swallowed or inhaled. Always use adequate ventilation such as that provided by a fume hood. Please read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

|                                                         | Volume/Tube            | Final         |
|---------------------------------------------------------|------------------------|---------------|
| Component                                               | (μ <b>L)</b>           | Concentration |
| RNase-free water                                        | See below <sup>a</sup> | _             |
| 10X TaqMan <sup>®</sup> Buffer A                        | 5.0                    | 1X            |
| 25 mM Magnesium Chloride                                | 11.0                   | 5.5 mM        |
| 10 mM deoxyATP                                          | 1.0                    | 200 μM        |
| 10 mM deoxyCTP                                          | 1.0                    | 200 µM        |
| 10 mM deoxyGTP                                          | 1.0                    | 200 μM        |
| 20 mM deoxyUTP                                          | 1.0                    | 400 μM        |
| 10 μM Ribosomal RNA Forward<br>Primer                   | 0.25                   | 50 nM         |
| 10 μM Ribosomal RNA Reverse<br>Primer                   | 0.25                   | 50 nM         |
| 40 μM Ribosomal RNA Probe (VIC <sup>™</sup> )           | 0.25                   | 200 nM        |
| AmpErase <sup>®</sup> UNG (1U/µL)                       | 0.5                    | 0.01 U/μL     |
| AmpliTaq Gold <sup>®</sup> DNA<br>Polymerase (5.0 U/μL) | 0.25                   | 0.025 U/μL    |
| Total                                                   | 21.5                   | —             |

a. The volume of RNase-free water will be (28.5  $\mu$ L – cDNA sample volume).

# PCR Reaction<br/>PreparationFor a description of how to prepare the PCR reaction, refer to the<br/>TaqMan Gold RT-PCR Kit Protocol (P/N 402876), or TaqMan Universal<br/>PCR Master Mix Protocol (P/N 4304449).

#### PCR Reaction Thermal Cycling Parameters

The cycling parameters for the PCR step (step two) of a 50- $\mu$ L, two-step RT-PCR reaction using the TaqMan Gold RT-PCR Kit are listed below.

| Step   | UNG<br>Incubation | AmpliTaq<br>Gold<br>Activation | PC       | R                 |
|--------|-------------------|--------------------------------|----------|-------------------|
|        | HOLD              | HOLD                           | CYCLE (4 | 10 cycles)        |
|        |                   |                                | Denature | Anneal/<br>Extend |
| Temp   | 50 °C             | 95 °C                          | 95 °C    | 60 °C             |
| Time   | 2 min             | 10 min                         | 15 sec   | 1 min             |
| Volume |                   |                                | 50 μL    |                   |

**IMPORTANT** The 2-min, 50 °C step is required for optimal AmpErase UNG enzyme activity. The 10-min, 95 °C step is required to activate AmpliTaq Gold DNA Polymerase.

#### PCR Reaction Mix Using TaqMan Universal PCR Master Mix

The ingredients of a 50- $\mu$ L reaction, PCR Reaction Mix using the TaqMan Universal PCR Master Mix are listed in the table below.

**CAUTION** CHEMICAL HAZARD. TaqMan Universal PCR Master Mix may cause eye and skin irritation. It may cause discomfort if swallowed or inhaled. Always use adequate ventilation such as that provided by a fume hood. Please read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

|                                              | Volume/Tube            | Final         |
|----------------------------------------------|------------------------|---------------|
| Component                                    | (μ <b>L)</b>           | Concentration |
| RNase-free water                             | See below <sup>a</sup> | _             |
| TaqMan <sup>®</sup> Universal PCR Master Mix | 25                     | 1X            |
| 10 μM Ribosomal RNA Forward<br>Primer        | 0.25                   | 50 nM         |
| 10 μM Ribosomal RNA Reverse<br>Primer        | 0.25                   | 50 nM         |
| 40 µM Ribosomal RNA Probe (VIC™)             | 0.25                   | 200 nM        |
| Total                                        | 25.75                  | —             |

a. The volume of RNase-free water will be (24.25  $\mu$ L – DNA sample volume).

#### PCR Reaction Preparation

For a description of how to prepare the PCR reaction, refer to the *TaqMan Gold RT-PCR Kit Protocol* or *TaqMan Universal PCR Master Mix Protocol* (P/N 4304449).

#### PCR Reaction Thermal Cycling Parameters

The cycling parameters for the PCR step (step two) of a 50- $\mu$ L, two-step RT-PCR reaction using the TaqMan Gold RT-PCR Kit are listed below.

| Step   | UNG<br>Incubation | AmpliTaq<br>Gold<br>Activation | PC       | R                 |
|--------|-------------------|--------------------------------|----------|-------------------|
|        | HOLD              | HOLD                           | CYCLE (4 | 0 cycles)         |
|        |                   |                                | Denature | Anneal/<br>Extend |
| Temp   | 50 °C             | 95 °C                          | 95 °C    | 60 °C             |
| Time   | 2 min             | 10 min                         | 15 sec   | 1 min             |
| Volume |                   |                                | 50 μL    |                   |

**IMPORTANT** The 2-min, 50 °C step is required for optimal AmpErase UNG enzyme activity. The 10-min, 95 °C step is required to activate AmpliTaq Gold DNA Polymerase.



# Data Analysis

#### **Overview**

| <b>About This</b> | This chapter describes how to analyze your data by:                  |          |
|-------------------|----------------------------------------------------------------------|----------|
| Chapter           | <ul> <li>Changing the baseline for the amplification plot</li> </ul> |          |
|                   | <ul> <li>Interpreting the results</li> </ul>                         |          |
| In This Chapter   | The following topics are discussed in this chapter:                  |          |
|                   | Торіс                                                                | See Page |
|                   | Preparing for Data Analysis                                          | 4-2      |
|                   | Interpreting the Results                                             | 4-5      |

#### **Preparing for Data Analysis**

| Changing the      | Because of the abundance of rRNA, low $C_T$ values are obtained in             |
|-------------------|--------------------------------------------------------------------------------|
| Baseline on the   | TaqMan <sup>®</sup> RT-PCR applications. During the data analysis step, if the |
| <b>ABI PRISM</b>  | amplification plot appears as shown in Figure 4-1 (linear ordinate) or         |
| Sequence          | Figure 4-2 (logarithmic ordinate), then it is necessary to change the          |
| Detection Systems | baseline numbers.                                                              |
|                   |                                                                                |

The baseline should be adjusted such that the amplification curve growth begins at a cycle number that is beyond the highest baseline number.

When the baseline is adjusted correctly, the amplification plot will appear as shown in Figure 4-3 (linear ordinate) or Figure 4-4 (logarithmic ordinate).

#### Note Refer to

http://www.appliedbiosystems.com/support/tutorials/baseline for more information on this subject.



Figure 4-1 Amplification plot with incorrect baseline (linear ordinate)













Data Analysis 4-3

#### Low C<sub>T</sub> Values in No Template Control The universal ribosomal sequences utilized in this module are found throughout the environment. Because of the ubiquitous nature of these sequences and prevalence, care must be taken to minimize environmental contamination (see "Preventing Contamination" on page 1-14).

If the No Template Control tubes yield  $C_T$  values less than 40 cycles, then consideration must be given to the impact the background will have on quantitation in the test samples.

For example, if the No Template Control (NTC) yields a C<sub>T</sub> value of 35 cycles and the test samples yield C<sub>T</sub> values in the range of 25 cycles then the  $\Delta$ C<sub>T</sub> value between the NTC and the test sample is 10 cycles.

In this example, if 100% amplification efficiency is assumed, then a ten-fold difference in template concentration results in a  $\Delta C_T$  value of 3.3 cycles. A  $\Delta C_T$  equal to 10 cycles results in a 0.1% difference in quantitation of template copy number. This has an insignificant impact on relative quantitation.

If the  $\Delta C_T$  value is <7 to 9 cycles, then the  $C_T$  value for the NTC and its impact on relative quantitation will be have to be evaluated on a case-by-case basis.

#### **Interpreting the Results**

- Normalization The Passive Reference is a dye included in the 10X TaqMan® Buffer A, in the TaqMan® Universal Master Mix, and in the 5X TaqMan® EZ Buffer, and does not participate in the 5' nuclease assay. The Passive Reference provides an internal reference to which the reporter dye signal can be normalized during data analysis. Normalization is necessary to correct for fluorescent fluctuations due to changes in concentration or volume.
- **Multicomponenting** Multicomponenting is the term used to distinguish the contribution each individual dye makes to the fluorescent spectra. The overlapping spectra from the pure dye components generate the composite spectrum. This spectrum represents one fluorescent reading from one well. Dyes available for multicomponent analysis are:

| Types of Dyes     | Dyes                             |
|-------------------|----------------------------------|
| Reporters         | FAM™, TET™, JOE™, VIC™           |
| Quenchers         | TAMRA™, NON-FLUORESCENT QUENCHER |
| Passive Reference | ROX™                             |

 $\label{eq:rescaled} \begin{array}{l} \mathbf{R}_n and \ \Delta \mathbf{R}_n \ \mathbf{Values} \\ \text{Normalization is accomplished by dividing the emission intensity of the} \\ \text{reporter dye by the emission intensity of the Passive Reference to} \\ \text{obtain a ratio defined as the } \mathbf{R}_n \ (\text{normalized reporter}) \ \text{for a given} \\ \text{reaction tube.} \end{array}$ 

 $R_n^+$  is the  $R_n^-$  value of a reaction containing all components including the template.

 $R_n^-$  is the  $R_n$  value of an unreacted sample. This value may be obtained from the early cycles of a Real Time run, those cycles prior to a detectable increase in fluorescence. This value may also be obtained from a reaction not containing template.

 $\Delta R_n$  is the difference between the  $R_n^+$  value and the  $R_n^-$  value. It reliably indicates the magnitude of the signal generated by the given set of PCR conditions.

The following equation expresses the relationship of these terms:

$$\Delta \mathsf{R}_{\mathsf{n}} = (\mathsf{R}_{\mathsf{n}}^{+}) - (\mathsf{R}_{\mathsf{n}}^{-})$$

where:

| $R_n^+ =$         | Emission Intensity of Reporter                                            | PCR with template                                                  |
|-------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
|                   | Emission Intensity of Passive Reference                                   |                                                                    |
| R <sub>n</sub> -= | Emission Intensity of Reporter<br>Emission Intensity of Passive Reference | PCR without template or<br>early cycles of a Real Time<br>reaction |

#### 

On the graph of  $R_n$  versus cycle number shown, the threshold cycle occurs when the Sequence Detection Application begins to detect the increase in signal associated with an exponential growth of PCR product.





# Troubleshooting

#### Troubleshooting

| Observation                                                                                                | Possible Cause                                                           | Recommended Action                                                                                                           |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| $\Delta R_n \le No$ Template                                                                               | Inappropriate reaction conditions                                        | Troubleshoot RT-PCR optimization.                                                                                            |
| Control ∆R <sub>n</sub> , and no amplification plot                                                        | Incorrect dye components chosen                                          | Check dye component prior to data analysis.                                                                                  |
|                                                                                                            | Reaction component omitted                                               | Check that all the correct reagents were added.                                                                              |
|                                                                                                            | Incorrect primer or probe sequence                                       | Resynthesize with appropriate sequence.                                                                                      |
|                                                                                                            | Degraded template or no template added                                   | Repeat with fresh template.                                                                                                  |
|                                                                                                            | Reaction inhibitor present                                               | Repeat with purified template.                                                                                               |
| $\Delta R_n \le No$ Template<br>Control $\Delta R_n$ , and both<br>reactions show an<br>amplification plot | Amplicon contamination of reagents<br>Template contamination of reagents | Check technique and equipment to confine contamination. Use fresh reagents.                                                  |
| Shifting R <sub>n</sub> value<br>during the early cycles                                                   | Fluorescent emissions have not<br>stabilized to new buffer conditions    | Reset lower value of baseline range.                                                                                         |
| OFPER (cycles 0-5)                                                                                         | PCR, or the final results.                                               | Add probe to the buffer component<br>and allow it to equilibrate at room<br>temperature prior to Reagent Mix<br>formulation. |
| Abnormal amplification<br>plot as seen in<br>Figure 4-1 on page 4-2<br>and Figure 4-2 on<br>page 4-3.      | C <sub>T</sub> value <15, amplification signal detected in early cycles  | Refer to "Preparing for Data<br>Analysis" on page 4-2.                                                                       |

#### Troubleshooting (continued)

| Observation                                                 | Possible Cause                                | Recommended Action                                                                   |
|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|
| Multicomponent signal<br>for ROX <sup>™</sup> is not linear | Pure dye component's spectra are<br>incorrect | Recalibrate the instrument with pure dye standards.                                  |
|                                                             | Incorrect dye components choosen              | Choose correct dyes for data analysis.                                               |
| Small ∆R <sub>n</sub>                                       | PCR efficiency is poor                        | Reoptimize reaction conditions.                                                      |
|                                                             | Low copy number of target                     | Increase starting copy number.                                                       |
| $C_T$ value is higher than                                  | Less template added than expected             | Increase sample amount.                                                              |
| expected                                                    | Sample is degraded                            | Evaluate sample integrity.                                                           |
| $C_T$ value is lower than                                   | More sample added than expected               | Reduce sample amount.                                                                |
| expected                                                    | Template or amplicon contamination            | Review "General PCR Practices" on page 1-16.                                         |
| Standard deviation of C <sub>T</sub> value >0.16            | Inaccurate pipetting                          | Prepare a Reagent Mix. Refer to<br>"Reaction Mix Preparation" on<br>page 2-2 or 3-2. |
|                                                             |                                               | Use positive-displacement pipettors.                                                 |



# References

Bhatia, P., Taylor, W.R., Greenberg, A.H., and Wright, J.A. 1994. Comparison of glyceraldehyde-3-phosphate dehydrogenase and 28S-ribosomal RNA gene expression as RNA loading controls for northern blot analysis of cell lines of varying malignant potential. *Anal. Biochem.* 216:223–226.

de Leeuw, W.J., Slagboom, P.E., and Vijg, J. 1989. Quantitative comparison of mRNA levels in mammalian tissues: 28S ribosomal RNA level as an accurate internal control. *Nucleic Acids Res.* 17:10137–10138.

Duhl, D.M., Gillespie, D.D., and Sulser, F. 1992. Ethidium bromide fluorescence of 28S ribosomal RNA can be used to normalize samples in northern or dot blots when analyzing small drug-induced changes in specific mRNA. *J. Neurosci. Methods* 42:211–218.

Kwok, S. and Higuchi, R. 1989. Avoiding false positives with PCR. *Nature* 339:237–238.

Longo, M.C., Berninger, M.S., and Hartley, J.L. 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. *Gene* 93:125–128.

Mullis, K.B. and Faloona, F.A. 1987. Specific synthesis of DNA *in vitro* via a polymerase-catalyzed chain reaction. *Methods Enzymol.* 155:335–350.

Saiki, R.K., Scharf, S., Faloona, F., *et al.* 1985. Enzymatic amplification of  $\beta$ -globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science* 230:1350–1354.



# **Technical Support**

#### **Services & Support**

Applied To access the Applied Biosystems Web site, go to:

#### Biosystems Web Site http://www.appliedbiosystems.com

At the Applied Biosystems Web site, you can:

- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support
- Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents
- Download PDF documents
- Obtain information about customer training
- Download software updates and patches

In addition, the Applied Biosystems Web site provides a list of telephone and fax numbers that can be used to contact Technical Support.

#### Headquarters

850 Lincoln Centre Drive Foster City, CA 94404 USA Phone: +1 650.638.5800 Toll Free: +1 800.345.5224 Fax: +1 650.638.5884

#### Worldwide Sales Offices

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches into 150 countries on six continents. For international office locations, please call our local office or refer to our web site at www.appliedbiosystems.com.

#### www.appliedbiosystems.com



Applera Corporation is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses.

Printed in the USA, 04/2002 Part Number 4308310C

an Applera business