SuperScript ${ }^{\text {tm }}$ III One-Step RT-PCR System with Platinum ${ }^{\text {Tw }}$ Taq High Fidelity DNA Polymerase

Catalog Numbers 12574-030 and 12574-035

Doc. Part No. 12574.HIFI.pps Pub. No. MAN0001093 Rev. A. 0

\triangle
WARNING! Read the Safety Data Sheets (SDSs) and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves. Safety Data Sheets (SDSs) are available from thermofisher.com/support.

Product description

The Invitrogen ${ }^{\text {Tw }}$ SuperScript ${ }^{\text {Tw }}$ III One-Step RT-PCR System with Platinum ${ }^{\text {Tw }}$ Taq High Fidelity DNA Polymerase is designed for sensitive, highfidelity end-point detection and analysis of RNA molecules by RT-PCR. Using this convenient one-step formulation, you can perform both cDNA synthesis and PCR amplification in a single tube using gene-specific primers and target RNAs from either total RNA or mRNA. The system uses a mixture of SuperScript ${ }^{\text {™ }}$ III Reverse Transcriptase and Platinum ${ }^{\text {TIN }}$ Taq High Fidelity DNA Polymerase for enhanced RT-PCR yields and fidelity, as well as the detection of longer templates. The system can detect a wide range of RNA targets from 300 bp to 10 kb , and is compatible with multiplex applications. The amount of starting material can range from 1 pg to $1 \mu \mathrm{~g}$ of total RNA.
The system consists of two major components: SuperScript ${ }^{\text {tu }}$ III RT/ Platinum ${ }^{\text {™ }}$ Taq High Fidelity Enzyme Mix and 2X Reaction Mix. SuperScript ${ }^{\text {tTM }}$ III Reverse Transcriptase is a version of M-MLV RT that has been engineered to reduce RNase H activity and provide increased thermal stability. The enzyme can synthesize cDNA at a temperature range of $45-60^{\circ} \mathrm{C}$, providing increased specificity, higher yields of cDNA, and more full-length product than other reverse transcriptases. Because SuperScript ${ }^{\text {tII }}$ III RT is not significantly inhibited by ribosomal and transfer RNA, it can be used to synthesize cDNA from total RNA.
Platinum ${ }^{\text {™ }}$ Taq High Fidelity DNA Polymerase is an enzyme mixture composed of recombinant Taq DNA polymerase, Pyrococcus species GB-D polymerase, and Platinum ${ }^{\text {t"1 }}$ Taq antibodies, which block polymerase activity at ambient temperatures. The antibodies are denatured and polymerase activity is restored during the denaturation step in PCR cycling at $94^{\circ} \mathrm{C}$, providing an automatic "hot start" in PCR and increasing sensitivity, specificity, and yield. Pyrococcus species GB-D polymerase is a proofreading enzyme that possesses a 3^{\prime} to 5^{\prime} exonuclease activity. Using this enzyme with Taq DNA polymerase results in a six-fold increase in fidelity over Taq DNA polymerase alone and allows amplification of simple and complex DNA templates over a large range of target sizes.
The 2 X Reaction Mix included in the kit consists of a proprietary buffer system that has been optimized for reverse transcription and PCR, and includes Mg^{2+}, deoxyribonucleotide triphosphates (dNTPs), and stabilizers. A tube of $5 \mathrm{mM} \mathrm{MgSO}{ }_{4}$ is included in the kit for further optimization of the Mg^{2+} concentration. Sufficient reagents are provided for 25 or 100 amplification reactions of $50 \mu \mathrm{~L}$ each.
Note: This kit has been optimized for end-point RT-PCR. For quantitative real-time RT-PCR, use the SuperScript ${ }^{\text {Tim }}$ III Platinum ${ }^{\text {™ }}$ One-Step Quantitative RT-PCR System (see "Ordering information" on page 3).

Contents and storage

Contents	Cat. No. 12574-030 (25 reactions)	Cat. No.12574-035 (100 reactions)	Storage
SuperScript ${ }^{\text {TM }}$ III RT/ Platinum ${ }^{\text {TM }}$ Taq High Fidelity Enzyme Mix	$25 \mu \mathrm{~L}$	$100 \mu \mathrm{~L}$	Store all components at $-30^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$.
2X Reaction Mix (a buffer containing 0.4 mM of each dNTP, 2.4 mM MgSO)	1 mL	$3 \times 1 \mathrm{~mL}$	
5 mM Magnesium Sulfate	$500 \mu \mathrm{~L}$	$500 \mu \mathrm{~L}$	

Procedural guidelines

Guidelines for RNA

- This kit has been optimized for use with 1 pg to $1 \mu \mathrm{~g}$ of total RNA.
- High-quality intact RNA is essential for successful full-length cDNA synthesis.
- For low copy-number genes or longer targets, use more starting material (>10 ng total RNA).
- RNA should be devoid of any RNase contamination and aseptic conditions should be maintained.
- We recommend the Micro-to-Midi" Total RNA Purification System or TRIzol ${ }^{\text {™ }}$ Reagent for isolation of total RNA. See "Ordering information" on page 3. Oligo(dT) selection for poly(A)+ RNA is typically not necessary, although it may improve the yield of specific cDNAs.

Guidelines for primers

- We recommend using gene-specific primers (GSPs). We do not recommend using oligo(dT) or random primers, because they can generate nonspecific products in the one-step procedure and the amount of RT-PCR product may be reduced.
- A final primer concentration of $0.2 \mu \mathrm{M}$ for each primer is generally optimal. However, for best results, we recommend performing a primer titration of $0.15-0.5 \mu \mathrm{M}$.
- Design primers that anneal to the mRNA sequence in exons on both sides of an intron or exon/exon boundary, to allow differentiation between the amplified cDNA and potential contaminating genomic DNA.
- Primers should not be self-complementary or complementary to each other at the 3^{\prime} ends.

Guidelines for magnesium and dNTP concentration

- MgSO_{4} is included in the 2 X Reaction Mix at a final concentration of 1.2 mM , which works well for most targets. If needed, the magnesium concentration can further be optimized (usually between $1.2-2 \mathrm{mM}$) with the 5 mM MgSO 4 provided in the kit.
- dNTPs are included in the 2 X Reaction Mix at a final concentration of $200 \mu \mathrm{M}$, which is optimal for most reactions.

Guidelines for PCR

- Program the thermal cycler before setting up the reaction. The thermal cycler should be preheated to $45-60^{\circ} \mathrm{C}$, depending on the temperature selected for cDNA synthesis.
- For difficult or high GC-content templates, use a $55-60^{\circ} \mathrm{C}$ cDNA synthesis temperature.
- Keep all components, reaction mixes, and samples on ice. After preparation of the samples, transfer them to the preheated thermal cycler and immediately start the RT-PCR program.
- Efficient cDNA synthesis can be accomplished in a $15-30-$ minute incubation at $45-60^{\circ} \mathrm{C}$. For small targets, an incubation time of 5 minutes may be sufficient.
- SuperScript ${ }^{\text {tw }}$ III RT is inactivated, Platinum ${ }^{\text {TM }}$ Taq High Fidelity DNA Polymerase is reactivated, and the RNA/cDNA hybrid is denatured during the 2 -minute incubation at $94^{\circ} \mathrm{C}$.
- The annealing temperature should be $10^{\circ} \mathrm{C}$ below the melting temperature of the primers used.
- The extension time varies with the size of the amplicon (approximately 1 minute per 1 kb of amplicon).
- For all targets up to $10 \mathrm{~kb}, 1 \mu \mathrm{~L}$ of SuperScript ${ }^{\text {ti }}$ III RT/ Platinum ${ }^{\text {TTM }}$ Taq High Fidelity Enzyme Mix is sufficient.

Methods

The following cycling conditions were established and tested using a GeneAmp ${ }^{\text {TTM }}$ PCR System 9600 and 2400 and a DNA Engine Opticon ${ }^{\text {Tu }}$ PTC-200. You may need to adjust these conditions for other thermal cyclers. Efficient cDNA synthesis can be achieved in a 15-30-minute incubation at $45-60^{\circ} \mathrm{C}$. We recommend a 30 -minute incubation at $55^{\circ} \mathrm{C}$ as a general starting point. The optimal temperature for reverse transcription will depend on primer and target sequences. Cycling conditions may have to be further optimized for different sequences. Three-step cycling (separate annealing and extension steps) is required.

1. Program the thermal cycler so that cDNA synthesis is followed immediately with PCR amplification, automatically.

cDNA synthesis and pre-denaturation		Denature	Anneal	Extend	Final extention loptional
1 CYCLE		40 CYCLES	1 CYCLE		
$45-60^{\circ} \mathrm{C}$	$94^{\circ} \mathrm{C}$	$94^{\circ} \mathrm{C}$	$55-66^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{C}$
$15-30$ minutes	2 minutes	15 seconds	30 seconds	1 minute $/ \mathrm{kb}$	5 minutes

2. Add the following to a $0.2-\mathrm{mL}$, nuclease-free, thin-walled PCR tube on ice. For multiple reactions, you can prepare a master mix to minimize reagent loss and enable accurate pipetting.

Component	Volume
2X Reaction Mix	$25 \mu \mathrm{~L}$
Template RNA $(1 \mathrm{pg}$ to $1 \mu \mathrm{~g})$	$\mathrm{x} \mu \mathrm{L}$
Sense primer $(10 \mu \mathrm{M})$	$1 \mu \mathrm{~L}$
Anti-sense primer $(10 \mu \mathrm{M})$	$1 \mu \mathrm{~L}$
SuperScript ${ }^{\text {ITM }}$ RT/Platinum ${ }^{\text {Tm }}$ Taq High Fidelity Enzyme Mix ${ }^{[1]}$	$1 \mu \mathrm{~L}$
Autoclaved distilled water	to $50 \mu \mathrm{~L}$

${ }^{[1]}$ You can verify the absence of genomic DNA in RNA preparations by omitting the Enzyme Mix and substituting 2 units of Platinum ${ }^{\text {™ }}$ Taq High Fidelity DNA Polymerase in the reaction.
3. Gently mix and make sure that all the components are at the bottom of the amplification tube. Centrifuge briefly if needed. Depending on the thermal cycler used, overlay with silicone oil if necessary.
4. Place the reaction in the preheated thermal cycler programmed as described above. Collect the data and analyze the results.

Troubleshooting

Observation	Possible cause	Recommended action
Low specificity	Reaction conditions not optimal	Optimize magnesium concentration.
		Optimize the primer.
		Optimize the annealing temperature and extension time.
		Increase temperature of RT reaction to $60^{\circ} \mathrm{C}$.
	Oligo(dT) or random primers used for first-strand synthesis	Use only gene-specific primers.
No amplification product	No cDNA synthesis (temperature too high)	For the cDNA synthesis step, incubate $<55^{\circ} \mathrm{C}$.
	RNase contamination	Maintain aseptic conditions; add RNase inhibitor.
	Not enough starting template RNA	Increase the concentration of template RNA; use 100 ng to $1 \mu \mathrm{~g}$ of total RNA.
	RNA has been damaged or degraded	Replace RNA if necessary.
	RT inhibitors are present in RNA	Remove inhibitors in the RNA preparation by an additional 70\% ethanol wash. Note: Inhibitors of RT include SDS, EDTA, guanidium salts, formamide, sodium phosphate, and spermidine.
	Annealing temperature is too high	Decrease temperature as necessary.
	Extension time is too short	Set extension time for at least 60 seconds per kb of target length.
	Cycle number is too low	Increase cycle number.
Unexpected bands after electrophoretic analysis	Contamination by genomic DNA	Pretreat RNA with DNase I, Amplification Grade (Cat. No. 18068-015), as described in the DNase I documentation.
		Design primers that anneal to sequence in exons on both sides of an intron or at the exon/exon boundary of the mRNA to differentiate between amplified cDNA and potential contaminating genomic DNA.
		To test if products were derived from DNA, substitute 2 units of Platinum ${ }^{\text {Th }}$ Taq High Fidelity DNA Polymerase for the Enzyme Mix in the reaction.
	Nonspecific annealing of primers	Vary the annealing temperature.
		Optimize the magnesium concentration for each template and primer combination.
	Primers formed dimers	Design primers without complementary sequences at the 3' ends.

Ordering information

The following products are also available. Unless otherwise indicated, all materials are available through thermofisher.com.

Item	Amount	Source
SuperScript ${ }^{\text {TM }}$ III Platinum ${ }^{\text {TM }}$ One-Step Quantitative RT-PCR System	100 reactions	11732-020
	500 reactions	11732-088
SuperScript ${ }^{\text {tm }}$ III One-Step RT-PCR System with Platinum ${ }^{\text {Tm }}$ Taq DNA Polymerase	100 reactions	12574-018
	500 reactions	12574-026
TRIzol ${ }^{\text {TM }}$ Reagent	100 mL	15596-026
	200 mL	15596-018
DNase I, Amplification Grade	100 units	18068-015
Custom Primers	To order, visit thermofisher.com	

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale found on Life Technologies' website at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.

The information in this guide is subject to change without notice.
DISCLAIMER
TO THE EXTENT ALLOWED BY LAW, LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Revision history: Pub. No. MAN0001093

Revision	Date	Description
A.0	28 April 2016	Format, style, and legal updates
-	27 September 2012	Baseline for this revision history

Important Licensing Information: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.
Corporate entity: Life Technologies Corporation I Carlsbad, CA 92008 USA | Toll Free in USA 18009556288
©2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Opticon is a trademark of Bio-Rad Laboratories, Inc. TRIzol is a trademark of Molecular Research Center, Inc.

