GeneArt[™] Chlamydomonas Protein Expression Vector

For expression of recombinant proteins in Chlamydomonas reinhardtii

Catalog number A24231

Publication Number MAN0009793 Revision C.0

Information in this document is subject to change without notice.

DISCLAIMER

TO THE EXTENT ALLOWED BY LAW, LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Revision history

Revision	Date	Description		
C.0	26 April 2017	Updated kit contents, MCS and vector maps, reorganized protocols, and rebranded.		
B.0	20 May 2014	Basis for the current revision.		

Important Licensing Information

These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

Manufacturer: Life Technologies Corporation | 5791 Van Allen Way | Carlsbad, CA 92008

Trademarks

All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

ColiRollers is a trademark of EMD Biosciences, Inc.

Bio-Rad and Gene Pulser are registered trademarks of Bio-Rad Laboratories, Inc.

LI-COR is a registered trademark of LI-COR, Inc.

Percival is a registered trademark of Percival Scientific, Inc.

Mr. Frosty is a registered trademark of Nalge Nunc, Inc.

Zeocin is a trademark of CAYLA, SA.

Parafilm is a registered trademark of Bemis Company, Inc.

©2017 Thermo Fisher Scientific Inc. All rights reserved.

Contents

Product information	2
Contents and storage	2
Description of the system	3
Experiment outline	6
Methods	7
Clone into pChlamy_4 vector	7
Transform One Shot [™] TOP10 Competent <i>E. coli</i> cells	
Analyze <i>E. coli</i> transformants	
Appendix A: Support protocols	
Prepare reagents and media	
Guidelines for Chlamydomonas reinhardtii 137c (mt+) culture	
Thaw Chlamydomonas reinhardtii 137c (mt+)	16
Transform Chlamydomonas reinhardtii 137c (mt+) by electroporation	
Screen for integration by colony PCR	
Storage (short-term)	
Cryopreserve Chlamydomonas reinhardtii 137c (mt+) (long-term)	
Appendix B: pChlamy_4 vector	
Map and features of pChlamy_4 vector	24
Appendix C: Ordering information	
Accessory products	
Appendix D: Safety	
Chemical safety	
Biological hazard safety	
Documentation and support	
Obtaining support	
References	

Product information

Contents and storage

Kit contents

The GeneArt[™] *Chlamydomonas* Protein Expression Vector kit contains the following components.

Component	Concentration	Amount
pChlamy_4 vector	20 μL of vector at 0.5 μg/μL in TE buffer, pH 8.0*	10 reactions

***TE buffer, pH 8.0:** 10 mM Tris–HCl, 1 mM EDTA, pH 8.0

Shipping and
storageThe GeneArt[™] Chlamydomonas Protein Expression Vector is shipped on dry ice.
Upon receipt, store the vector at -20°C. When stored as directed, the vector is
guaranteed for six months.

Description of the system

GeneArt™ <i>Chlamydomonas</i> Protein Expression System	The GeneArt [™] <i>Chlamydomonas</i> Protein Expression System is a eukaryotic genetic engineering system based on the unicellular green alga <i>Chlamydomonas reinhardtii</i> 137c (mt+) (Pröschold et al., 2005) and the pChlamy_4 vector. The system offers a simplified approach for protein expression in algae for downstream applications such as biofuels, specialty chemicals, and industrial enzymes. The pChlamy_4 vector (page 4) is designed for high-level expression of your gene of interest (up to 1% of total soluble protein) and provides selection against gene silencing. The vector contains dual protein tags for detection and/or purification of your gene of interest. Note that the expression level depends on various factors such as cell age, the sequence content, and the size of the gene of interest.		
Chlamydomonas reinhardtii	The green algae <i>Chlamydomonas reinhardtii</i> has served as a genetic workhorse and model organism for understanding everything from the mechanisms of light and nutrient regulated gene expression to the assembly and function of flagella (Harris, 2001; Hippler <i>et al.</i> , 1998; Merchant <i>et al.</i> , 2007; Miller <i>et al.</i> , 2010; Molnar <i>et al.</i> , 2007). Recently, green algae have started to be used as a platform for the production of biofuel and bio-products, due mainly to their rapid growth and ability to use sunlight and CO ₂ as their main inputs (Radakovits <i>et al.</i> , 2010; Wang <i>et al.</i> , 2012). Green algae also offer various beneficial attributes including:		
	• The ease of transformation and the relatively short time between the generation of first transformants and their scale up to production volumes		
	• The ability to induce gametogenesis and carry out genetic crosses between haploid cells of opposite mating types		
	The ability to grow phototrophically or heterotrophically		
	• The ability to grow cultures on scales ranging from a few milliliters to 500,000 liters, in a cost effective manner		
	These attributes, and the fact that green algae fall into the GRAS category (i.e., recognized as safe by FDA), make <i>C. reinhardtii</i> an attractive system for the expression of recombinant proteins.		
Growth characteristics of <i>C. reinhardtii</i>	Compared to land plants, <i>C. reinhardtii</i> grows at a much faster rate, doubling cell numbers in approximately 8 hours under heterotrophic growth and 12 hours under photosynthetic growth. As <i>C. reinhardtii</i> propagates by vegetative division, the time from the initial transformation to product production is significantly reduced relative to plants, requiring as little as six weeks to evaluate production at flask scale, with the potential to scale up to 64,000 liters in another four to six weeks. <i>C. reinhardtii</i> also possesses a well characterized mating system, which makes it possible to carry our classical breeding through matings between		

makes it possible to carry our classical breeding through matings between transgenic algal lines in a short period of time (3–4 weeks) (Harris, 2001).

Heterologous gene expression in *C. reinhardtii*

In *C. reinhardtii*, expression of heterologous proteins presents several difficulties. The first problem is represented by the unusual codon bias of the *C. reinhardtii* nuclear genes that are highly GC rich (62%), so codon optimization must be performed on any gene for which high levels of protein expression are desired (Fuhrmann *et al.*, 2004; Fuhrmann *et al.*, 1999; Heitzer *et al.*, 2007). Also, expression levels of optimized foreign genes may vary considerably due to position effect that is driven by random integration of the gene of interest and strong silencing mechanism that drives by epigenetic phenomena similar to those in land plants (Schroda, 2006). In *C. reinhardtii* and other algae, as in land plants, silenced multicopy transgenes exhibit high levels of DNA methylation (Babinger *et al.*, 2001; Cerutti *et al.*, 1997). In contrast, single-copy transgenes are subject to transgene silencing without detectable cytosine methylation (Cerutti *et al.*, 1997). Another feature of most *C. reinhardtii* nuclear genes is the presence of several small introns in their coding sequences that exert a positive role in gene expression (Rasala *et al.*, 2012).

pChlamy_4 vector pChlamy_4 vector is designed for rapid cloning of your gene of interest for expression in *C. reinhardtii*. Like its predecessor, pChlamy_3, this vector is a nuclear integrative vector; its integration across the genome is a random event and the copy number of the integrated gene varies depending on the context of the gene of interest. However, several advancements have been developed for improved nuclear transgene expression on the newest version of pChlamy_4 since the launch of our pChlamy vector series. Some of the features of the vector are listed below. For a map of the vector, see page 24.

- Hsp70A-Rbc S2 chimeric constitutive promoter enables strong expression of the gene of interest.
- Antibiotic resistance gene for bleomycin/Zeocin[™] is introduced into the vector as an effective selection marker. The *Sh ble (Streptoalloteichus hindustanus* bleomycin gene) gene product confers resistance to the DNA double strand break-inducing bleomycin family of antibiotics through binding and sequestration, therefore antibiotic resistance is proportional to *Sh ble* expression levels. Compared to other selection markers, higher level of expression is observed for the protein of interest when *Sh ble* gene is used as a selection marker.
- Two copies of the native *C. reinhardtii* Intron-1 from Rbc S2 have been inserted into the *Sh ble* gene for mRNA stability and efficient expression. These introns are at vector positions 505–649 and 831–975 and they are spliced out from the *Sh ble* mature mRNA (Lumbreras *et al.*, 1998).
- Hsp70A-Rbc S2 hybrid promoter fusion to the bleomycin/Zeocin[™]-resistance gene forms a DNA element counteracting the silencing of Hsp70A-Rbc S2-*ble* gene, allowing the positive transformants to maintain protein expression levels for multiple passages with or without selection pressure.

pChlamy_4 vector continued

• Foot-and-mouth disease-virus (FMDV) 2A peptide encoding a 20 amino acid sequence that mediates a self-cleavage reaction is linked to transgene expression (Ryan *et al.*, 1991). During translation elongation of the 2A sequence, the last amino acid of the 2A sequence, a proline, is fused to the N-terminal of the first protein of interest or the N-terminal of the protein tag.

VKQTLNFDLLKLAGDVESNPG

- The 5'-UTR from the *C. reinhardtii* RbcS2 (Ribulose Bisphosphate Carboxylase/ Oxygenase Small Subunit 2) gene is directly upstream from the translational start site of the Bleomycin gene (Goldschmidt-Clermont and Rahire, 1986).
- A 3'-UTR fragment from RbcS2 gene downstream of the multiple cloning site ensures the proper termination of transcript.
 Note: The 5' and 3' UTR may contain sequences that regulate translation efficiency, mRNA stability, and polyadenylation signals (Anthonisen *et al.*, 2001; Rasala *et al.*, 2011).
- The versatile multiple cloning site facilitates simplified cloning of your gene of interest by seamless, Type IIs, or restriction enzyme digestion-based cloning.
- Dual protein tags provide the flexibility to express your protein of interest fused to either or both or none of the N-terminal and C-terminal tags.
- Ampicillin resistance gene allows selection in *E. coli*.
- Bleomycin/Zeocin[™]-resistance gene allows selection in *C. reinhardtii*.
- pUC origin allows the maintenance of the vector in *E. coli*.

Experiment outline

Workflow

The following table describes the major steps needed to clone and express your gene of interest in *C. reinhardtii*. For more details, see the pages indicated.

Step	Action	Page
1	Clone your codon optimized gene of interest into pChlamy_4 vector.	7
2	Transform <i>E. coli</i> with the pChlamy_4 construct containing your gene of interest and select the transformants on LB plates containing Ampicillin.	11
3	Analyze transformants by restriction digestion or PCR.	12
4	Thaw and resuscitate C. reinhardtii cells	16
5	Transform <i>C. reinhardtii</i> cells by electroporation and select transformants	17
6	Screen <i>C. reinhardtii</i> transformants by colony PCR for full integration of your gene of interest, or by an appropriate enzymatic assay	21

Methods

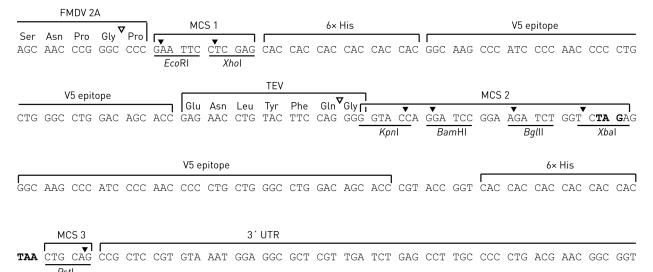
Clone into pChlamy_4 vector

General molecular biology techniques	For help with PCR amplification, DNA ligations, <i>E. coli</i> transformations, restriction enzyme analysis, DNA sequencing, and DNA biochemistry, see <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989) or <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994). For help with seamless cloning, see www.thermofisher.com/geneart and our free, web-based GeneArt [™] Primer and Construct Design Tool, which is available at www.thermofisher.com/order/oligoDesigner .		
<i>E. coli</i> host	For cloning and transformation, use a recombination deficient (<i>recA</i>) and endonuclease A-deficient (<i>endA</i>) strain such as TOP10. Note that other <i>recA</i> , <i>endA E</i> . <i>coli</i> strains are also suitable.		
Maintaining pChlamy_4	To propagate and maintain the pChlamy_4 vector, use 10 ng of the vector to transform a <i>recA</i> , <i>endA E</i> . <i>coli</i> strain like TOP10, DH5 α^{TM} , or equivalent. Select transformants on LB plates containing 50–100 µg/mL of ampicillin. Make sure to prepare a glycerol stock of the plasmid for long-term storage (page 12).		
Cloning considerations	• Since the <i>Synechococcus elongatus</i> PCC 7942 genome has a high GC content (~62% GC), the expression levels of recombinant genes are significantly improved if the gene of interest is adapted to the preferred codon usage of highly expressed <i>C. reinhardtii</i> genes. You can order synthesized codon-optimized <i>C. reinhardtii</i> genes from Invitrogen [™] GeneArt [™] Gene Synthesis services (www.thermofisher.com/geneartgenesynthesis).		
	• Note that two copies of the Intron-1 Rbc S2 (bases 505–649 and 831–977) are spliced out from the mature RNA and do not constitute actual codons. The reading frame before and after the removal of both copies of Intron-1 Rbc S2 is shown on page 8.		
	• pChlamy_4 vector contains the ATG initiation codon (vector ATG) for proper initiation of translation at position 497–499, found at the beginning of the <i>Sh ble</i> gene after the removal of Intron-1 Rbc S2 (see Figure 1, page 8). You do not need to add an ATG start codon to your insert.		
	• The FMDV 2A peptide gene flanking the Multiple Cloning Site 1 (MCS1) is in frame with the <i>Sh ble</i> gene. Make sure to clone your gene of interest in frame with the FMDV 2A gene using the sequence information for the MCS (Figure 2, page 9).		
	• N-terminal tag: To use the N-terminal 6× His-V5-TEV tag, clone your insert in-frame after the TEV site using your preferred cloning method. Ensure that your insert includes a stop codon for proper translation termination.		
	IMPORTANT! If you want to use the C-terminal tag, ensure that your insert does not contain a stop codon.		
	If you do not need to use the C-terminal tag, your insert must contain a stop codon for proper termination of your mRNA. You can either use the native sequence containing the stop codon in the reverse primer or ensure that the stop codon is upstream from the reverse PCR primer binding site.		
	Note that the <i>Xba</i> I site contains an internal stop codon (TC <u>TAG</u> A).		
	• C-terminal tag: To use the C-terminal V5-6× His tag, ensure that your insert does not contain a stop codon and is in-frame with the C-terminal tag.		

Figure 1. The region around the *Sh ble* gene before and after the splicing of Intron-1 Rbc S2.

Before splicing

				Int	tron-1 Rbc S2				
491	CTTAAA ATG G start	 CCAGGTGAGT	CGACGAGCAA	GCCCGGCGGA	TCAGGCAGCG	TGCTTGCAGA	TTTGACTTGC	AACGCCCGCA	TTGTGTCGAC
			Intron-1	Rbc S2					Sh ble part 1
581	GAAGGCTTTT	GGCTCCTCTG	TCGCTGTCTC	AAGCAGCATC	TAACCCTGCG	TCGCCGTTTC	CATTTGCAGG	ATGGCCATGC	ATATGGCCAA
					<i>Sh ble</i> part	1			
671	GCTGACCAGC	GCCGTTCCGG	TGCTCACCGC	GCGCGACGTC	GCCGGAGCGG	TCGAGTTCTG	GACCGACCGG	CTCGGGTTCT	CCCGGGACTT
			Sh ble part ´	l				Intror	-2 Rbc S2
761	CGTGGAGGAC	GACTTCGCCG	GTGTGGTCCG	GGACGACGTG	ACCCTGTTCA	TCAGCGCGGT	CCAGGACCAG	GTGAGTCGAC	GAGCAAGCCC
					Intron-1 RI	oc S2			
851	GGCGGATCAG	GCAGCGTGCT	TGCAGATTTG	ACTTGCAACG	CCCGCATTGT	GTCGACGAAG	GCTTTTGGCT	CCTCTGTCGC	TGTCTCAAGC
		Intron-1 Rbc	S2				Sh ble part	2	
941	AGCATCTAAC	CCTGCGTCGC	CGTTTCCATT	TGCAGGACCA	GGTGGTGCCG	GACAACACCC	TGGCCTGGGT	GTGGGTGCGC	GGCCTGGACG
					<i>Sh ble</i> part	2			
1031	AGCTGTACGC	CGAGTGGTCG	GAGGTCGTGT	CCACGAACTT	CCGGGACGCC	TCCGGGCCGG	CCATGACCGA	GATCGGCGAG	CAGCCGTGGG
			Sh ble part 2	2					
1121	GGCGGGAGTT	CGCCCTGCGC	GACCCGGCCG	GCAACTGCGT	GCACTTCGTG	GCCGAGGAGC	AGGACGCCCC	GGTGAAGCAG	ACCCTGAACT
	culicing								
Atter	splicing								


491 CTTAAAATG CCAGGATGC CATGCATATG GCCAAGCTGA CCAGCGCCGT TCCGGTGCTC ACCGCGCGCG ACGTCGCCGG AGCGGTC... start

Sh ble

Multiple cloning site of pChlamy_4 Figure 2 below depicts the multiple cloning sites for pChlamy_4. With the choice of three multiple cloning sites (MCS1, MCS2, MCS3), you can express your protein as a native, an N-terminal, or a C-terminal fusion protein. Use Figure 2 to design appropriate PCR primers to clone and express your PCR product in pChlamy_4.

- The three sets of restriction sites are labeled, where the black triangles indicate the cleavage sites. The ATG initiation codon (vector ATG) is found immediately upstream of *Sh ble* gene (not shown here; see Figure 1, page 8), and the potential stop codons are shown in bold.
- The white rectangles denote the cleave sites for the FMDV 2A peptide and TEV protease cleavage sites.
- Whether or not your gene of interest (GOI) contains an ATG initiation codon, it must be cloned in frame to the *Sh ble* and FMDV 2A peptide genes, and the tags. Otherwise, your GOI will not be properly expressed.
- The vector sequence of pChlamy_4 is available at **www.thermofisher.com** or by contacting Technical Support (page 30).

Figure 2. Multiple cloning site of the pChlamy_4 vector.

Ligation	After you have determined a cloning strategy and PCR amplified your gene of interest, digest pChlamy_4 with the appropriate restriction enzyme and ligate your insert containing your gene of interest using standard molecular biology techniques. We recommend using high concentration T4 ligase (Cat. No. 15224041).				
Seamless cloning with GeneArt™ Seamless and Seamless PLUS	The pChlamy_4 vector is compatible with the GeneArt [™] Seamless Cloning and Assembly technology, which allows the simultaneous and seamless assembly of up to 4 DNA inserts between 100 bp and 10 kb and a linearized pChlamy_4 vector, totaling up to 13 kb in length.				
Cloning and Assembly Kits	After you have determined where to position your gene of interest in the pChlamy_4 vector, use the diagram depicting the MCS of pChlamy_4 (page 9) to design appropriate PCR primers to clone and express your PCR product in the pChlamy_4 vector. The primers should have at least 15-nt homology to the pChlamy_4 vector at their 5' end.				
	After digesting the pChlamy_4 vector with the appropriate restriction enzymes, PCR amplify your gene(s) of interest, then use the GeneArt [™] Seamless Cloning and Assembly Enzyme Mix (Cat. No. A14606) or the GeneArt [™] Seamless PLUS Cloning and Assembly Kit (Cat. No. A14603) to seamlessly assemble into the digested pChlamy_4 vector.				
	For detailed instructions on how to use the GeneArt [™] Seamless Cloning and Assembly Enzyme Mix or the GeneArt [™] Seamless PLUS Cloning and Assembly Kit, see the relevant user guide, which is available for download at www.thermofisher.com.				
	For help with primer design for seamless cloning, use our free, web-based GeneArt [™] Primer and Construct Design Tool, available at www.thermofisher.com/order/oligoDesigner .				
	For more information on seamless cloning and assembly technologies, see our website at www.thermofisher.com/geneart .				
Seamless cloning with GeneArt™ Type IIs Assembly	You can also use the GeneArt [™] Type IIs Assembly Kit, <i>Aar</i> I (Cat. No. A15916) or the GeneArt [™] Type IIs Assembly Kit, <i>Bbs</i> I (Cat. No. A15918) to seamlessly clone and assemble up to 8 DNA fragments and the pChlamy_4 vector by simultaneous cleavage and ligation in a single reaction.				
Kits	However, the GeneArt [™] Type IIs Assembly Kit, <i>Bsa</i> I (Cat. No. A15917) cannot be used with the pChlamy_4 vector, because the vector contains a <i>Bsa</i> I restriction site in the Ampicillin resistance gene.				
	For more information, see the relevant user guide, which is available for download at www.thermofisher.com .				
<i>E. coli</i> transformation method	Chemical transformation is the most convenient for most researchers and a protocol for the chemical transformation of One Shot [™] TOP10 Chemically Competent <i>E. coli</i> cells is provided on page 11. You can use the chemical transformation method for seamless, Type IIs, and restriction enzyme digestion-based cloning.				
	You can also transform electrocompetent <i>E. coli</i> cells by electroporation, which is more efficient and the method of choice for large plasmids. You can use electroporation for Type IIs and restriction enzyme digestion-based cloning. Do not use electroporation for seamless cloning.				

Transform One Shot[™] TOP10 Competent *E. coli* cells

Introduction	con of sui clo	After you have performed the cloning reaction, transform your pChlamy_4 construct into competent <i>E. coli</i> . The following protocol describes the transformation of OneShot [™] TOP10 Chemically Competent <i>E. coli</i> cells, but you can also use other suitable cells. If you are performing Type IIs or restriction enzyme digestion-based cloning, you can also transform electrocompetent cells using the protocol supplied with the electrocompetent cells.		
Materials needed	•	pChlamy_4 construct containing your gene of interest		
	٠	One Shot [™] TOP10 Chemically Competent <i>E. coli</i>		
	٠	S.O.C. Medium		
	٠	pUC19 positive control (recommended for verifying transformation efficiency)		
	٠	42°C water bath		
	٠	LB plates containing 100 μ g/mL of ampicillin (two for each transformation)		
	•	37°C shaking and non-shaking incubator		
Prepare for transformation	For each transformation, you need one vial of competent cells and two selective plates.			
	1.	Equilibrate a water bath to 42°C.		
	2.	Warm the vial of S.O.C. medium to room temperature.		
	3.	Warm LB plates containing 100 μ g/mL of ampicillin at 37°C for 30 minutes.		
	4.	Thaw on ice 1 vial of One Shot [™] TOP10 for each transformation.		
One Shot™ chemical transformation	1.	Add 1–5 µL of the DNA (10 pg to 100 ng) into a vial of One Shot [™] Chemically Competent <i>E. coli</i> and mix gently. Do not mix by pipetting up and down .		
protocol		Note: If you are transforming the pUC19 control plasmid, use 10 pg (1 μ L).		
	2.	Incubate on ice for 5 to 30 minutes.		
		Note: Longer incubations on ice seem to have a minimal effect on transformation efficiency.		
	3.	Heat-shock the cells for 30 seconds at 42°C without shaking.		
	4.	Immediately transfer the tubes to ice.		
	5.	Add 250 µL of room temperature S.O.C. Medium.		
	6.	Cap the tube tightly and shake the tube horizontally (200 rpm) at 37°C for 1 hour.		
	7.	Spread 50–200 μ L from each transformation on a prewarmed selective plate and incubate overnight at 37°C. We recommend that you plate two different volumes to ensure that at least one plate has well-spaced colonies.		
	8.	Pick 5–10 colonies for analysis (see "Analyze <i>E. coli</i> transformants", page 12).		

Analyze *E. coli* transformants

Pick positive <i>E. coli</i> clones	1.	Pick 5–10 colonies and culture them overnight in LB medium containing 100 μg/mL of ampicillin.		
clones	2.	Isolate plasmid DNA using your method of choice. If you need ultra-pure plasmid DNA for automated or manual sequencing, we recommend using the PureLink [™] HQ Mini Plasmid Purification Kit (Cat. No. K210001; see page 27).		
	3.	Analyze the plasmids by restriction analysis or PCR (see below) to confirm the presence and correct orientation of the insert.		
Analyze <i>E. coli</i> transformants by PCR	E. a am to l	e the following protocol (or any other appropriate protocol) to analyze positive <i>coli</i> transformants using PCR. You have to determine the primer sequences and aplification conditions based on your gene of interest. Design a forward primer hybridize to the vector backbone flanking your insert and a reverse primer to bridize within your insert. You can also perform restriction analysis in parallel.		
	Ma	terials needed:		
	٠	PCR Super Mix High Fidelity (Cat. No. 10790020)		
	•	Appropriate forward and reverse PCR primers (20 μ M each)		
	Pro	Procedure:		
	1.	For each sample, aliquot 48 μ L of PCR SuperMix High Fidelity into a 0.5-mL microcentrifuge tube. Add 1 μ L each of the forward and reverse PCR primer.		
	2.	Pick 5–10 colonies and resuspend them individually in 50 μ L of the PCR SuperMix containing PCR primers (remember to make a patch plate to preserve the colonies for further analysis).		
	3.	Incubate reaction for 10 minutes at 92–98°C to lyse cells and inactivate nucleases.		
	4.	Amplify for 20–30 cycles.		
	5.	For the final extension, incubate at 72°C for 10 minutes. Store at 2°C–8°C.		
	6.	Visualize by agarose gel electrophoresis.		
Analyze <i>E. coli</i> transformants by sequencing	After you have identified one or more correct clones, sequence your construct to confirm that your gene is cloned in the correct orientation. Design a primer that hybridizes to the vector backbone flanking your insert to help you sequence your insert. For the complete sequence of the pChlamy_4 vector, see our website (www.thermofisher.com) or contact Technical support (see page 30).			
Long-term storage	After you have identified the correct clone, make a glycerol stock for long-term storage. We recommend that you store a stock of plasmid DNA at -20°C.			

Appendix A: Support protocols

Prepare reagents and media

How to handle Zeocin™ selection reagent	Zeocin [™] selection reagent (Cat. No. R25001) is a basic, water-soluble, copper- chelated glycopeptides that is a member of the bleomycin/phleomycin family of antibiotics isolated from <i>Streptomyces verticillus</i> . It shows strong toxicity against bacteria, fungi (including yeast), plants, and mammalian cell lines (Calmels <i>et al.</i> 1991; Drocourt <i>et al.</i> , 1990; Gatignol <i>et al.</i> , 1987; Mulsant <i>et al.</i> , 1988; Perez <i>et al.</i> , 1989). The copper-chelated form of Zeocin [™] selection reagent is inactive. When the antibiotic enters the cell, the copper cation is reduced from Cu ²⁺ to Cu ¹⁺ and removed by sulfhydryl compounds in the cell. Upon removal of the copper, Zeocin [™] becomes activated and binds and cleaves DNA, causing cell death. When handling Zeocin [™] reagent, follow the guidelines below:		
	High ionic strength, acidity, and basic	try inhibit the activity of $\operatorname{Zeocin}^{M}$.	
	Store Zeocin [™] at −20°C and thaw on i	ce before use.	
	Zeocin ^{M} is light sensitive. Store the dr the drug in the dark.	ug and plates or medium containing	
	Wear gloves, a laboratory coat, and sa containing solutions.	ifety glasses when handling Zeocin™	
	Do not ingest or inhale solutions cont	aining the drug.	
	Bandage any cuts on your fingers to a	void exposure to the drug.	
TAP-40 mM sucrose solution		dissolving 342.3 g of sucrose in 800 mL to bring the final volume to 1 L. Filter ugh a 0.22-µm filter.	
	Note: You can prepare this solution se electroporation.	everal days before performing the	
	To prepare the TAP-40 mM sucrose so of Gibco [™] TAP medium.	olution, add 42 mL of 1 M sucrose to 1 L	
TAP-Zeocin™ solution	Add Zeocin [™] stock solution (Cat. No. medium to a final concentration of 2.5	R25001; at 100 mg/mL) to Gibco™ TAP 5 µg/mL.	
	Filter-sterilize through a 0.22-µm filte	r and store at 2°C–8°C in the dark.	
TAP-Agar plates	Add 15 g of agar to 200 mL of Gibco™	TAP medium in an autoclavable flask.	
•	Autoclave on liquid cycle for 20 minu	tes.	
	Warm 800 mL of Gibco [™] TAP medium	n to 55°C–60°C in a water bath	
	After autoclaving, cool the agar conta	ining flask to ~55°C.	
	Combine the agar containing flask wi pour into 10 cm plates.	th 800 mL of Gibco™ TAP medium and	
	Let the plates harden (do not overdry the dark. Final agar concentration wil), invert them, and store at 2°C–8°C in l be 1.5%.	
	Note: Overdrying the plates drastical	ly reduces the transformation efficiency.	

TAP-Agar-Zeocin™ plates

- 1. Add 15 g of agar to 200 mL of Gibco[™] TAP medium in an autoclavable flask.
- 2. Autoclave on liquid cycle for 20 minutes.
- 3. Warm 800 mL of Gibco[™] TAP medium to 55–60°C in a water bath
- 4. After autoclaving, cool the agar containing flask to ~55°C.
- 5. Combine the agar containing flask with 800 mL of Gibco[™] TAP medium
- 6. Add Zeocin[™] stock solution to a final concentration of 5 μg/mL (i.e., 50 μL of 100 mg/mL stock solution), and pour into 10-cm plates.
- 7. Let the plates harden (do **not** overdry), invert them, and store at 2°C–8°C in the dark. Final agar concentration will be 1.5%.

Guidelines for Chlamydomonas reinhardtii 137c (mt+) culture

General guidelines for *C. reinhardtii* culture The following culture guidelines are for *Chlamydomonas reinhardtii* 137c (mt+). For more information, see Pröschold *et al.* (2005).

- *C. reinhardtii* is easy and inexpensive to grow. Routine maintenance is done at room temperature on 1.5% agar, while growth for individual experiments is typically done in liquid culture in shake flasks or bottles.
- *C. reinhardtii* has a short generation time of less than 8 hours under optimum conditions.
- All solutions and equipment that can contact cells must be sterile. Always use proper sterile technique and work in a laminar flow hood.
- Grow the cells using Gibco[™] TAP medium, which is formulated for optimal growth and maintenance of *C. reinhardtii* cells.
- *C. reinhardtii* laboratory and wild type strains grow well between 20–28°C and can tolerate temperatures as low as 15°C and as high as 35°C. The strain in this kit (*C. reinhardtii* 137c) should be grown at 26°C under continuous illumination using moderate light intensities of cool fluorescent white light ($50 \pm 10 \ \mu\text{E} \ \text{m}^{-2} \ \text{s}^{-1}$) with constant agitation on a gyratory shaker set to 100–150 rpm.
- The optimal equipment for culturing *C. reinhardtii* is an algal growth chamber (e.g., Percival[™] Algal Chamber from Geneva Scientific) with regulatable light supply and a light meter (e.g., LI-250A Light Meter from LI-COR[™]) to guide adjustments. If an algal growth chamber is not available, the cells can be grown in a standard cell culture incubator illuminated with cool fluorescent lights placed within 12 inches of the culture plates. Standard room lights provide suboptimal growth conditions.
- Phototrophic cultures should be supplied with CO₂ at 5% for maximal growth, although the *C. reinhardtii* 137c strain included in the kit can grow in the incubator without the need of additional CO₂ supply.
- Flasks for liquid culture can be stoppered with sterile foam plugs, polypropylene caps, aluminum foil, cotton, or any cap that allows air exchange.
- After transformation and plating, do not stack the culture plates to allow continuous uniform illumination.
- *C. reinhardtii* is classified as a GRAS (generally regarded as safe) organism with no known viral or bacterial pathogens. However, we recommend following general safety guidelines under Biosafety Level 1 (BL-1) containment, similar to working with *E. coli* or yeast. For more information on BL-1 guidelines, see *Biosafety in Microbiological and Biomedical Laboratories*, 5th ed., published by the Centers for Disease Control (www.cdc.gov).

Thaw Chlamydomonas reinhardtii 137c (mt+)

Materials needed	•	<i>C. reinhardtii</i> 137c (mt+) cells
		Note: You can order <i>C. reinhardtii</i> strains from the <i>Chlamydomonas</i> Resource Center at www.chlamycollection.org .
	٠	35°C water bath
	•	Algal Growth Chamber (e.g., Percival [™] Algal Chamber from Geneva Scientific) set to 26°C, 50 μE m ⁻² s ⁻¹
		Note: If an Algal Chamber is not available, you can use a standard cell culture incubator under continuous illumination using moderate intensities of cool fluorescent white light (50 μ E m ⁻² s ⁻¹).
	٠	Rotary shaking platform set to 110 rpm
	٠	500-mL glass culture flask
	•	Gibco™ TAP medium (Cat. No. A1379801 or A1379802), pre-warmed to room temperature
	٠	70% ethanol
	٠	Dry ice
	٠	Disposable cell spreaders
	•	Reagents and equipment to determine viable and total cell counts (such as counting chamber/hemocytometer, Countess [™] II Automated Cell Counter, or similar)
Thaw <i>C. reinhardtii</i> cells	1.	Remove the frozen cells from –80°C storage and immediately place them in a dry ice container. Bury the vials containing the cells in dry ice to minimize temperature fluctuations before thawing.
	2.	Add 200 mL of Gibco [™] TAP medium, pre-warmed to room temperature, into a 500-mL glass culture flask.
	3.	Remove the cryovial containing the frozen cells from the dry ice storage and immediately place it into a 35°C water bath.
	4.	Quickly thaw the cells by gently swirling the vial in the 35° C water bath until the cell have completely thawed (1–2 minutes).
	5.	Before opening, wipe the outside of the vial with 70% ethanol.
	6.	Transfer 230 μL of thawed cells from the vial into the glass culture flask containing 200 mL of Gibco™ TAP medium.
	7.	Place the flasks in the algal growth chamber set to 26°C and 50 μ E m ⁻² s ⁻¹ .
	8.	Incubate the cells for 3–6 days with agitation on a rotary shaker set to 110 rpm.
	9.	On Day 3, count the cell number. If the culture has not yet reached 1×10^6 cells/mL, return it to the algal growth chamber and continue the incubation. Check the cell concentration of the culture daily until it reaches 1×10^6 cells/mL. Once the culture has reached 1×10^6 cells/mL, proceed to the transformation step (page 17).

Transform *Chlamydomonas reinhardtii* 137c (mt+) by electroporation

Introduction	Introduction of exogenous DNA into the unicellular, green alga <i>Chlamydomonas</i> <i>reinhardtii</i> is hindered by the organism's rigid cell wall. Although various methods, such as glass beads agitation, electroporation, and microparticle bombardment, have been successfully used to transform <i>C. reinhardtii</i> , they provide very low transformation efficiency. The GeneArt [™] MAX Efficiency [™] Transformation Reagent (Cat. No. A24229) facilitates the delivery of DNA into the cell during electroporation, providing 2 to 3 orders of magnitude increase in transformation efficiency compared to conventional electroporation methods.
Guidelines for <i>C. reinhardtii</i> transformation	 Perform all steps of the electroporation procedure at room temperature. Nuclear transformation of <i>C. reinhardtii</i> can be achieved with circular DNA; however, transformation with linearized DNA is much more efficient. We recommend using <i>Sca</i>I restriction enzyme for linearization, provided that the insert does not contain the recognition sequence for <i>Sca</i>I. Otherwise, you may select from <i>Pvu</i>I, <i>Ssp</i>I, or <i>Fsp</i>I.
	• The number of insertions into the <i>C. reinhardtii</i> genome is also influenced by the amount of DNA used. We recommend using 2 µg of linearized plasmid DNA per electroporation.
	• The quality and the concentration of DNA used play a central role for the efficiency of transformation. Use a commercial kit such as the PureLink [™] HQ Mini Plasmid Purification Kit (Cat. No. K210001), PureLink [™] HiPure Plasmid Miniprep Kit (Cat. No. K210002), or the PureLink [™] Expi Endotoxin-Free Mega Plasmid Purification Kit (Cat. No. A31232) that delivers pure DNA, and elute the purified DNA from the purification column using pure water instead of TE or E1 buffer.
	• For best results, grow the cells to 1×10^{6} – 2×10^{6} cells/mL before proceeding with electroporation. You may use <1 × 10 ⁶ cells/mL, but the concentration should not exceed 3 × 10 ⁶ cells/mL.
	• Insertion of the plasmid DNA into the genome occurs randomly. On average only 50% of transformants will express the gene of interest at appreciable levels. We recommend first screening the colonies by colony PCR (see page 21) to ensure full integration of the promoter and the gene of interest, followed by the screening of several positive clones for the expression of the gene of interest to pick the highest expressing clone.
	• Because the <i>C. reinhardtii</i> genome has a very high GC content (~62% GC), the expression levels of recombinant genes are significantly improved if the gene of interest is adapted to the preferred codon usage of highly expressed <i>C. reinhardtii</i> genes.

Materials needed	•	pChlamy_4 constru the appropriate rest		gene of interest an	d linearized with
		Note: We recommended that the in	nd using <i>Sca</i> I restric sert does not contai	in the recognition	
	•	GeneArt [™] MAX Effi	ciency [™] Transforma	ation Reagent (Ca	t. No. A24229)
	•	Gibco [™] TAP mediun temperature	n (Cat. No. A13798	01 or A1379802), p	pre-warmed to room
	•	TAP-40 mM sucrose for recipe)	solution, pre-warn	ned to room temp	erature (see page 13
	٠	TAP-Agar-Zeocin [™]	plates (5 µg/mL) (s	ee page 14 for reci	ipe)
	•	Sterile 15-mL and 50)-mL centrifugation	tubes	
	•	0.4-cm red electropo	oration cuvettes (Ca	t. No. P46050), chi	illed on ice
	•	Electroporation dev MPK5000), Neon [™] T the Bio-Rad [™] Gene I	ransfection System		
	•	ColiRollers [™] plating spreaders	glass beads (Nova	gen, Cat. No. 7101	3) or disposable cell
Electroporate using the Neon™		r detailed instructions on using the Neon [™] Transfection System, see the Neon [™] ansfection System user guide, available for download at www.thermofisher.com .			
Transfection System	1.	When cell concentration reaches 1×10^{6} – 2×10^{6} cells/mL (see page 16), harvest them by centrifugation at 2,500 rpm for 5 minutes. Discard the supernatant and carefully remove all liquid as much as possible.			
		Note: Cells must be in early log phase and harvested gently. If the cell concentration is $<1 \times 10^6$ cells/mL, you can still harvest the cells without significantly affecting the transformation efficiency. If the cell concentration exceeds 3×10^6 cells/mL, discard the cells and start a new culture.			
	2.	Resuspend the cell pellet in 10 mL of GeneArt [™] MAX Efficiency [™] Transformation Reagent and centrifuge at 2,500 rpm for 5 minutes. Discard the supernatant and carefully remove all liquid as much as possible.			5 minutes. Discard
	3.	Resuspend the cell pellet again in 10 mL of GeneArt [™] MAX Efficiency [™] Transformation Reagent, and centrifuge the cells once more at 2,500 rpm for 5 minutes.			
	4.	Resuspend the cell pellet in GeneArt TM MAX Efficiency TM Transformation Reagent to a final concentration of 1×10^8 – 3×10^8 cells/mL.			
	5.	Add 1 μ g of linearized DNA per 100 μ L of cell suspension and incubate at 2°C–8°C for 5 minutes.			
	6.	Fill the Neon [™] Tube Neon [™] Pipette Statie			insert it into the
		Note: After 2–3 shocks, E2 buffer needs to be chilled on ice again.			
	7.	Set electroporation	parameters on the N	Jeon [™] device as fo	ollows:
		Voltage	Pulse width	Pulse number	
		2300V	13 ms	3	

8. Pipette up 100 µL of the DNA-cell mix in the 100-µL Neon[™] Tip and insert the tip into the Neon[™] Tube in the pipette station until you hear a click.

- 9. Press Start on the touchscreen to deliver the electric pulse.
- 10. Eject the electroporated cells into a 15-mL centrifuge tube (chilled on ice) and allow the cells to recover on the bench for 15 minutes.
- 11. Add 4 mL of TAP-40 mM sucrose solution at room temperature to the cells and incubate them in the algal chamber overnight.
- 12. The next day, centrifuge the cells at 2,500 rpm for 5 minutes, discard 3.8 mL of the supernatant, and resuspend the cells in the remaining 200 μ L of TAP-40 mM sucrose solution.
- Spread 200 µL of the cell suspension on a TAP-agar-Zeocin[™] plate using disposable cell spreaders or glass plating beads to spread the cells evenly. Make sure the plates do not have condensation on them.
- 14. Place the plates agar side down in the algal growth chamber set to 26° C and $50 \ \mu$ E m⁻² s⁻¹. Do not stack the plates to ensure continuous and even illumination.
- 15. Incubate the plates for 5–7 days or until *C. reinhardtii* colonies are clearly visible. The transformation efficiency with the pChlamy_4 construct depends on the nature, size, and codon content of the gene of interest, and the physiological state of the cells.
- 16. Proceed to colony PCR to determine colony integration (see page 21) before selecting clones for further scale-up.
- 17. About 50% of the colonies should be positive for the geneof interestof. Due to random integration and silencing events in *C. reinhardtii*, we recommend picking at least 10 positive colonies and testing them for the expression level of the gene of interest by RT-PCR (or Western blotting, if you have the antibody to detect it).

Electroporate using the Bio-Rad™ Gene Pulser™ II device If using an electroporation device such as the Bio-Rad[™] Gene Pulser[™] II, follow the protocol below. If using the Neon[™] Transfection System, see **Electroporation** using the Neon[™] Transfection System, page 18.

- Harvest the cells as described in Steps 1–3 of the Neon[™] II protocol (page 18), and resuspend them in GeneArt[™] MAX Efficiency[™] Transformation Reagent to a final concentration of 2 × 10⁸–3 × 10⁸ cells/mL.
- 2. Add 2–4 μ g of linearized DNA per 250 μ L of cell suspension and incubate at 2°C–8°C for 5 minutes.
- 3. Set electroporation parameters on the Gene Pulser[™] II as follows:

Voltage		Capacity	Resistance	
	500 V	50 µF	800 Ω	

- 4. Transfer 250 μL of the cell-DNA mix into an ice-cold cuvette (pre-chilled on ice) just before electroporation.
- 5. Electroporate the cells using the appropriate settings (500 V, 50 μ F, 800 Ω). Usually, the electro pulse duration is about 30 ms.
- 6. After electroporation, allow the cells to recover on the bench for 15 minutes.
- 7. Transfer the cells into a 50-mL conical tube or flask containing 10 mL of TAP-40 mM sucrose solution at room temperature.
- 8. Place the cells in the algal chamber algal growth chamber set to 26°C and 50 μ E m⁻² s⁻¹ and incubate for 14–16 hours.
- 9. Harvest the cells centrifugation at 2500 rpm for 5 minutes, discard the supernatant, and resuspend the pellet in 200 μ L TAP medium at room temperature.
- 10. Plate the entire cell solution from each transformation on one TAP-agar-Zeocin[™] plate using disposable cell spreaders or glass plating beads to spread the cells evenly. Make sure the plates do not have condensation on them.
- 11. Place the plates with agar side at the bottom in the algal growth chamber that is set to 26° C and $50 \,\mu\text{E} \,\text{m}^{-2} \,\text{s}^{-1}$. Do not stack the plates to ensure continuous and even illumination.
- 12. Incubate the plates for 5–7 days or until *C. reinhardtii* colonies are clearly visible. The transformation efficiency with the pChlamy_4 construct will depend on the nature, size, and codon content of the gene of interest, and the physiological state of the cells.
- 13. Proceed to determination of integration by colony PCR (see page 21) before selecting clones for further scale-up.

About 50% of the colonies should be positive for the gene of interest. Due to random integration and silencing events in *C. reinhardtii*, we recommend picking at least 10 positive colonies and testing them for the expression level of the gene of interest by RT-PCR (or Western blotting, if you have the antibody to detect it).

Screen for integration by colony PCR

Introduction	the gen app	se the protocols below to prepare cell lysates and perform colony PCR to screen e transformed <i>C. reinhardtii</i> colonies for full integration of the promoter and the ne of interest. You will have to design the forward and reverse PCR primers propriate for your insert and determine the amplification conditions. We commend using the AccuPrime TM <i>Pfx</i> Polymerase SuperMix for best results.		
Materials needed	•	AccuPrime [™] <i>Pfx</i> SuperMix (Cat	No. 12344040)	
	•	Appropriate forward and rever	se primers (10 µ	uM each)
Prepare cell lysates	1.	Pick half of a colony for analysis using a P-20 pipette tip and drop it into the PCR tube containing 10 μ L of water. Repeat for up to 20 additional colonies.		
		Note: Remember to make a pate experiments.	ch plate to prese	erve the colonies for further
	2.	Boil the tubes at 95°C for 10 mir	nutes (a thermo	cycler can also be used).
	3.	After 10 minutes, resuspend each colony in water by pipetting up and This is the cell lysate that you will use as a template for PCR in the ne		
Perform colony	1.	Prepare the following PCR mix	for each cell lys	sate:
PCR		Reagent	Amount	
		AccuPrime [™] <i>Pfx</i> SuperMix	47 μL	
		Cell lysate	1 µL	-
		Forward primer (10 µM)	1 µL	
		Reverse primer (10 µM)	1 µL	-
		Reverse primer (10 µM) Total volume:	1 μL 50 μL	
	2.	· · · · · ·	50 µL	hermal cycler.
		Total volume:	50 μL d load into a th	•
		Total volume: Mix the contents of the tubes an Use the following PCR program	50 μL d load into a th	•
		Total volume: Mix the contents of the tubes an Use the following PCR program primers:	50 μL d load into a th	•

- 55–65°C for 30 seconds 68°C for 1 minute per kb
- 4. Maintain reaction at 2°C–8°C after cycling. Samples can be stored at –20°C.
- 5. Analyze the results by agarose gel electrophoresis. Approximately 20% of the colonies should be positive for full integration of the promoter and the gene of interest.

Storage (short-term)

Store C. reinhardtiiPlates containing transformed cells can be wrapped in Parafilm™ laboratory film
and stored at room temperature for at least one month.The best method for the preservation and long-term storage of C. reinhardtii is
cryopreservation (see below), which dramatically reduces genetic drift, lowers

The best method for the preservation and long-term storage of C. *reinhardtii* is cryopreservation (see below), which dramatically reduces genetic drift, lowers labor and cost associated with the maintenance of algae plates, and facilitates strain and clone exchange between laboratories.

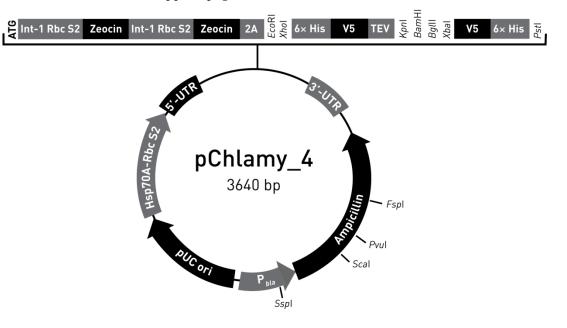
Cryopreserve Chlamydomonas reinhardtii 137c (mt+) (long-term)

GeneArt™ Cryopreservation Kit for Algae	For cryopreservation, we recommend using the GeneArt [™] Cryopreservation Kit for Algae, available separately from Thermo Fisher Scientific (Cat. No. A24228), which allows algae to be frozen and stored in a –80°C freezer for at least 2 years.
Materials needed	 <i>C. reinhardtii</i> cells (wild type or transformants) to cryopreserve Note: Cells should be in mid- to late-logarithmic phase for cryopreservation. GeneArt[™] Cryopreservation Kit for Algae (Cat. No. A24228) Reagents and equipment to determine viable and total cell counts (such as a counting chamber/hemocytometer or Countess[™] II Automated Cell Counter) Mr. Frosty[™] freezing container (Cat. No. 5100-0001) Benchtop centrifuge (e.g., Sorvall) Nalgene[™] General Long-Term Storage Cryogenic Tubes (Cat. No. 5000-0020) Algal Growth Chamber (e.g., Percival[™] Algal Chamber from Geneva Scientific) set to 26°C, 50 µE m⁻² s⁻¹ Note: If an algal growth chamber is not available, the cells can be grown in a standard cell culture incubator illuminated with cool fluorescent lights placed within 12 inches of the culture plates. Rotary shaking platform set to 110 rpm 250-mL clear-glass culture flask Gibco[™] TAP medium (Cat. No. A13798), pre-warmed to room temperature 70% ethanol Dry ice

Freeze *C. reinhardtii* cells

- 1. Grow *C. reinhardtii* 137c (mt+) cells (wild type or transformants) into mid- to late-logarithmic phase under standard culture conditions.
- 2. Prepare pre-conditioning medium in a 250-mL clear-glass culture flask by adding 1 mL of Cryopreservation Reagent A into 45 mL of fresh Gibco[™] TAP medium.
- 3. Inoculate the pre-conditioning medium with *C. reinhardtii* cells from step 1 to a final OD₇₅₀ of 0.1 (usually, 2–5 mL of seed culture). Do not exceed OD₇₅₀ of 0.4.
- 4. Place the culture flask on a rotary shaking platform set to 110 rpm in an algal growth chamber at 26°C and 50 μ E m⁻² s⁻¹, and incubate for 3 days. You can let the cells grow in pre-conditioning medium for 2–5 days, but the optimal time is 3 days.
- 5. After 3 days of growth, measure the OD₇₅₀ of the culture and calculate the cell concentration using the equation below.
- 6. Cell concentration (cells/mL) = $(OD_{750} 0.088)/(9 \times 10^{-8})$
- 7. *Optional:* After 3 days growth under lighted conditions, the culture can be moved to dim light condition for overnight incubation before harvest (step 7, below). This optional step could increase cell viability during freezing.
- 8. Harvest the cells by centrifugation at 2,500 rpm for 5 minutes and carefully remove as much of the supernatant as possible.
- Resuspend the cells to a final concentration of 2.5 × 10⁷ cells/mL in Cryopreservation Reagent B. Start counting the incubation time at this point (30–45 minutes at room temperature; see step 9, below).

Note: Do not exceed more than 5×10^7 cells/mL (cell viability is dramatically reduced at higher concentrations).


- 10. Aliquot exactly 240 μ L of cell suspension into each cryovial and incubate at room temperature for 30–45 minutes.
- 11. Remove the sponge insert from the Mr. Frosty[™] freezing container and directly insert the gray high-density polyethylene vial holder in its place. Transfer the cryovials containing the cells into the Mr. Frosty[™] freezing container. If you do not have 18 vials to occupy all the slots of the vial holder, fill the remainder of slots with similar liquid-filled cryovials to ensure a proper cooling profile. Do not fill the container with 100% isopropanol or any other freezing liquid.
- 12. Move Mr. Frosty[™] freezing container with the cryovials to -80°C. Place the Mr. Frosty[™] freezing container on an open space in the freezer to ensure that no other objects block the cooling process.
- 13. In the next 2 hours, make sure that the -80°C freezer remains unopened. Opening the freezer door during this period changes the cells' cooling profile and can result in decreased cell viability.
- 14. After 4 hours, the cryovials can be transferred to another container for longer term storage at -80°C or remain in the Mr. Frosty[™] freezing container.
- 15. The cells can be stored at -80°C for at least 2 years. Note that this freezing protocol may also be appropriate for other species of *Chlamydomonas*.

Appendix B: pChlamy_4 vector

Map and features of pChlamy_4 vector

Map of pChlamy_4 vector

The following map shows the features of pChlamy_4 vector. The complete sequence of the vector is available for download at **www.thermofisher.com** or from Technical support (page 30).

Features of pChlamy_4 Vector 3640 nucleotides

Hsp70A-Rbc S2 promoter:	1–461
5´-UTR:	462-496
ATG start codon:	497-499
Intron-1 Rbc S2 (copy 1):	505-649*
Zeocin resistance gene (<i>Sh ble</i>):	663-1185
Intron-1 Rbc S2 (copy 2):	831-975*
FMDV 2A peptide sequence:	1186-1257
MCS 1:	1258-1269
6× His tag:	1270-1287
V5 epitope:	1288-1329
TEV recognition site:	1330-1351
MCS 2:	1350-1379
V5 epitope:	1381-1422
6× His tag:	1432-1449
MCS 3:	1453–1458
3´-UTR:	1459–1692
Ampicillin resistance gene (<i>bla</i>):	1890–2750 (c)**
<i>bla</i> promoter (P _{bla}):	2751–2802 (c)
pUC origin:	2848-3251

* spliced out from the *She ble* mature mRNA ** (c): complementary strand

Features of	The pChlamy_4 vector contains the following elements. All features have been
pChlamy_4 vector	functionally tested.

Feature	Benefit
Hsp70A-Rbc S2 promoter	A hybrid constitutive promoter consisting of Hsp70 and RbcS2 promoters for strong expression of the gene of interest
Intron-1 Rbc S2	First intron of the small subunit of the ribulose bisphosphate carboxylase (rbcS2); necessary to maintain the high expression of your gene of interest. This is the endogenous (i.e., native) <i>C. reinhardtii</i> Rbc S2.
Zeocin [™] resistance gene (<i>Sh ble</i>)	<i>Streptoalloteichus hindustanus</i> bleomycin-Zeocin [™] resistance gene (<i>Sh ble</i>) allows selection in <i>C. reinhardtii</i> .
	The <i>Sh ble</i> gene contains two copies of the Intron-1 RbcS2 (at positions 505–649 and 831–975).
FMDV 2A peptide sequence	Foot-and-mouth disease-virus (FMDV) 2A peptide linked to transgene expression mediates a self-cleavage reaction. During translation elongation of the 2A sequence, the last amino acid of the 2A sequence, a proline, is fused to the N-terminal of the first protein of interest or the N-terminal of the protein tag.
Multiple cloning sites with 7 unique restriction enzyme recognition sequences (<i>Eco</i> RI, <i>XhoI</i> , <i>KpnI</i> , <i>Bam</i> HI, <i>BglII</i> , <i>XbaI</i> , <i>Pst</i> I)	Allows insertion of your gene into pChlamy_4 vector with the flexibility to include either or both or none of the N-terminal and C-terminal tags using seamless, Type IIs, or restriction enzyme-based cloning methods.
V5 epitopes (Gly-Lys-Pro-Ile-Pro-Asn-Pro-Leu- Leu-Gly-Leu-Asp-Ser-Thr)	Allows detection of the fusion protein with the Anti-V5 Antibody or the Anti-V5-HRP Antibody (Southern <i>et al.</i> , 1991).
N-terminal and C-terminal polyhistidine (6× His) tags	Allows purification of your fusion protein on metal-chelating resins (i.e., ProBond [™]).
TEV recognition site	Allows TEV protease-dependent cleavage of the N-terminal 6× His tag from your recombinant protein upon purification.
3' UTR from RbcS2 gene	Assures the proper termination of transcript; 3' UTR may contain sequences that regulate translation efficiency, mRNA stability, and polyadenylation signals.
Ampicillin resistance gene (bla)	Allows selection of the plasmid in <i>E. coli</i> .
bla promoter	Allows expression of the Ampicillin resistance gene.
pUC origin	Allows high-copy replication and growth in <i>E. coli</i> .

Appendix C: Ordering information

Accessory products

Proofreading DNA polymerases

We offer various proofreading, thermostable DNA polymerases for generating blunt-end PCR products. For more information, visit **www.thermofisher.com**.

Product	Quantity	Cat. No.
Platinum [™] <i>Pfx</i> DNA Polymerase	100 units	11708013
AccuPrime [™] <i>Pfx</i> DNA Polymerase	200 reactions	12344024
<i>Pfx50</i> [™] DNA Polymerase	100 reactions	12355012

Competent cells Chemically competent and electrocompetent cells that can be used with GeneArt[™] *Chlamydomonas* Protein Expression Vector are also available separately. For more information, visit **www.thermofisher.com**.

Product	Quantity	Cat. No.
One Shot [™] TOP10 Chemically Competent Cells	10 reactions 20 reactions	C404010 C404003
One Shot TM TOP10 Electrocomp TM E. coli	10 reactions 20 reactions	C404050 C404052
TOP10 Electrocomp [™] Kits	20 reactions 40 reactions 120 reactions	C66455 C66411 C66424

Other GeneArt™ products for algae

The following GeneArt[™] products for algal expression, culture, and maintenance are available from Thermo Fisher Scientific. For more information, visit **www.thermofisher.com**.

Product	Quantity	Cat. No.
GeneArt [™] MAX Efficiency [™] Transformation Reagent	250 mL	A24229
GeneArt [™] Cryopreservation Kit for Algae	1 kit	A24228
GeneArt [™] Synechococcus Protein Expression Vector	10 reactions	A24240
Gibco [™] TAP Growth Media, optimized for <i>Chlamydomonas</i> culture	1 L 6 × 1 L	A1379801 A1379802
Gibco [™] BG-11 Media, optimized for cyanobacteria	1 L 6 L	A1379901 A1379902

GeneArt[™] Seamless Assembly products

The following GeneArt[™] products can be used for seamless assembly of up to 10 DNA inserts and vector. For more information, visit **www.thermofisher.com** or contact Technical Support (see page 30).

Product	Quantity	Cat. No.
GeneArt [™] Type IIs Assembly Kit, AarI	1 kit	A15916
GeneArt [™] Type IIs Assembly Kit, <i>Bbs</i> I	1 kit	A15918
GeneArt [™] Seamless PLUS Cloning and Assembly Kit	1 kit	A14603
GeneArt [™] Seamless Cloning and Assembly Enzyme Mix	20 reactions	A14606
GeneArt [™] Linear pUC19L Vector for Seamless Cloning	20 reactions	A13289
GeneArt [™] Seamless Cloning and Assembly Kit	1 kit	A13288

Additional products

The following products are recommended for use with the GeneArt[™] *Chlamydomonas* Protein Expression Vector. For more information, visit **www.thermofisher.com**.

Product	Quantity	Cat. No.
Neon [™] Transfection System	1 each	MPK5000
Neon [™] Transfection System 100 µL Kit	25×2 reactions	MPK10025
Electroporation cuvettes, 0.4 cm	50/bag	P46050
PureLink [™] Growth Block	50 blocks	12256020
PureLink [™] HQ Mini Plasmid Purification Kit	100 preps	K210001
PureLink [™] HiPure Plasmid Miniprep Kit	25 preps 100 preps	K210002 K210003
PureLink [™] Expi Endotoxin-Free Mega Plasmid Purification Kit	2 preps 4 preps	A31233 A31232
Zeocin [™] Selection Reagent	8 × 1.25 mL	R25001
Ampicillin Sodium Salt, irradiated	200 mg	11593027
LB Broth (1X), liquid	500 mL	10855021
V5 Epitope Tag Antibody	50 µL	R96025
AcTEV [™] Protease	1000 units	12575015
EnzChek [™] Ultra Xylanase Assay Kit	1 kit	E33650

Chemical safety

WARNING! GENERAL CHEMICAL HANDLING. To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below, and consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, see the "Documentation and Support" section in this document.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood).
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer's cleanup procedures as recommended in the SDS.
- Handle chemical wastes in a fume hood.
- Ensure use of primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- After emptying a waste container, seal it with the cap provided.
- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- **IMPORTANT!** Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

Biological hazard safety

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Conduct all work in properly equipped facilities with the appropriate safety equipment (for example, physical containment devices). Safety equipment can also include items for personal protection, such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses, or goggles. Individuals should be trained according to applicable regulatory and company/ institution requirements before working with potentially biohazardous materials. Follow all applicable local, state/provincial, and/or national regulations. The following references provide general guidelines when handling biological samples in laboratory environment.

In the US:

• U.S. Department of Health and Human Services guidelines published in Biosafety in Microbiological and Biomedical Laboratories found at:

www.cdc.gov/biosafety

• Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR§1910.1030), found at:

www.access.gpo.gov/nara/cfr/waisidx_01/29cfr1910a_01.html

- Your company's/institution's Biosafety Program protocols for working with/handling potentially infectious materials.
- Additional information about biohazard guidelines is available at:

www.cdc.gov

In the EU:

Check local guidelines and legislation on biohazard and biosafety precaution and refer to the best practices published in the World Health Organization (WHO) Laboratory Biosafety Manual, 3rd edition, found at:

www.who.int/csr/resources/publications/biosafety/WHO_CDS_CSR_LYO_200 4_11/en/

Documentation and support

Obtaining support

Technical support	For the latest services and support information for all locations, go to www.thermofisher.com . At the website, you can:	
	• Access worldwide telephone and fax numbers to contact Technical support and Sales facilities	
	• Search through frequently asked questions (FAQs)	
	• Submit a question directly to Technical support (thermofisher.com/support)	
	• Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents	
	Obtain information about customer training	
	Download software updates and patches	
Safety Data Sheets (SDS)	Safety Data Sheets (SDSs) are available at www.thermofisher.com/sds .	
	IMPORTANT! For the SDSs of chemicals not distributed by Thermo Fisher Scientific contact the chemical manufacturer.	
Limited product warranty	Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale found on Life Technologies' website at www.thermofisher.com/us/en/home/global/terms- and-conditions.html . If you have any questions, please contact Life Technologies at www.thermofisher.com/support .	

References

- Anthonisen, I. L., Salvador, M. L., and Klein, U. (2001) Specific sequence elements in the 5' untranslated regions of rbcL and atpB gene mRNAs stabilize transcripts in the chloroplast of *Chlamydomonas reinhardtii*. RNA 7, 1024-1033.
- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994) *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley-Interscience, New York
- Babinger, P., Kobl, I., Mages, W., and Schmitt, R. (2001) A link between DNA methylation and epigenetic silencing in transgenic Volvox carteri. Nucleic Acids Res 29, 1261-1271
- Calmels, T., Parriche, M., Burand, H., and Tiraby, G. (1991) High Efficiency Transformation of *Tolypocladium geodes* Conidiospores to Phleomycin Resistance. Curr. Genet. 20, 309-314
- Cerutti, H., Johnson, A. M., Gillham, N. W., and Boynton, J. E. (1997) Epigenetic silencing of a foreign gene in nuclear transformants of *Chlamydomonas*. Plant Cell *9*, 925-945
- Drocourt, D., Calmels, T. P. G., Reynes, J. P., Baron, M., and Tiraby, G. (1990) Cassettes of the *Streptoalloteichus hindustanus ble* Gene for Transformation of Lower and Higher Eukaryotes to Phleomycin Resistance. Nucleic Acids Res. *18*, 4009
- Fuhrmann, M., Hausherr, A., Ferbitz, L., Schodl, T., Heitzer, M., and Hegemann, P. (2004) Monitoring dynamic expression of nuclear genes in *Chlamydomonas reinhardtii* by using a synthetic luciferase reporter gene. Plant Mol Biol 55, 869-881
- Fuhrmann, M., Oertel, W., and Hegemann, P. (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in *Chlamydomonas reinhardtii*. Plant J *19*, 353-361
- Gatignol, A., Baron, M., and Tiraby, G. (1987) Phleomycin Resistance Encoded by the *ble* Gene from Transposon Tn5 as a Dominant Selectable Marker in *Saccharomyces cerevisiae*. Molecular and General Genetics 207, 342-348
- Goldschmidt-Clermont, M. and Rahire, M. (1986) Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in *Chlamydomonas reinhardtii*. J.Mol Biol *191*, 421-432
- Harris, E. H. (2001) *Chlamydomonas* as a Model Organism. Annu Rev Plant Physiol Plant Mol Biol 52, 363-406
- Heitzer, M., Eckert, A., Fuhrmann, M., and Griesbeck, C. (2007) Influence of codon bias on the expression of foreign genes in microalgae. Adv Exp Med Biol *616*, 46-53
- Hippler, M., Redding, K., and Rochaix, J. D. (1998) *Chlamydomonas* genetics, a tool for the study of bioenergetic pathways. Biochim Biophys Acta 1367, 1-62
- Lumbreras, V. and Purton, S. (1998) Recent advances in Chlamydomonas transgenics. Protist 149, 23-27
- Lumbreras, V, Stevens, D. R., and Purton, S. (1998) Efficient foreign gene expression in *Chlamydomonas reinhardtii* mediated by an endogenous intron. The Plant Journal 14(4):441-447.

- Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., Marechal-Drouard, L., Marshall, W. F., Qu, L. H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S. M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C. L., Cognat, V., Croft, M. T., Dent, R., Dutcher, S., Fernandez, E., Fukuzawa, H., Gonzalez-Ballester, D., Gonzalez-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P. A., Lemaire, S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S. V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J. P., Riano-Pachon, D. M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer, J., Balk, J., Bisova, K., Chen, C. J., Elias, M., Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long, J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P., Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo, Y., Martinez, D., Ngau, W. C., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D. S., and Grossman, A. R. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250
- Miller, R., Wu, G., Deshpande, R. R., Vieler, A., Gartner, K., Li, X., Moellering, E. R., Zauner, S., Cornish, A. J., Liu, B., Bullard, B., Sears, B. B., Kuo, M. H., Hegg, E. L., Shachar-Hill, Y., Shiu, S. H., and Benning, C. (2010) Changes in transcript abundance in *Chlamydomonas reinhardtii* following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154, 1737-1752
- Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C., and Baulcombe, D. C. (2007) miRNAs control gene expression in the single-cell alga *Chlamydomonas reinhardtii*. Nature 447, 1126-1129
- Mulsant, P., Tiraby, G., Kallerhoff, J., and Perret, J. (1988) Phleomycin Resistance as a Dominant Selectable Marker in CHO Cells. Somat. Cell Mol. Genet. 14, 243-252
- Perez, P., Tiraby, G., Kallerhoff, J., and Perret, J. (1989) Phleomycin Resistance as a Dominant Selectable Marker for Plant Cell Transformation. Plant Mol. Biol. *13*, 365-373
- Pröschold, T., Harris, E. H., and Coleman, A. W. (2005) Portrait of a species: *Chlamydomonas reinhardtii*. Genetics 170, 1601-1610
- Radakovits, R., Jinkerson, R. E., Darzins, A., and Posewitz, M. C. (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9, 486-501
- Rasala, B. A., Lee, P. A., Shen, Z., Briggs, S. P., Mendez, M., and Mayfield, S. P. (2012) Robust expression and secretion of Xylanase1 in *Chlamydomonas reinhardtii* by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7, e43349
- Rasala, B. A., Muto, M., Sullivan, J., and Mayfield, S. (2011) Improved heterologous protein expression in the chloroplast of *Chlamydomonas reinhardtii* through promoter and 5' untranslated region optimization. Plant Biotechnology Journal 9, 674-683
- Ryan, M.D., King, A. M., and Thomas, G. P. (1991) Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol 72, 2727-2732
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, Second Ed., Cold Spring Harbor Laboratory Press, Plainview, New York
- Schroda, M. (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49, 69-84
- Wang, B., Wang, J., Zhang, W., and Meldrum, D. R. (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3, 344

