*ion*torrent

Oncomine Tumor Mutation Load Assay

A next-generation sequencing assay for an emerging immuno-oncology biomarker

Introduction: the need for a targeted panel in immuno-oncology research

Immunotherapy is now widely accepted as a key component of oncology therapeutic strategies. Utilizing the body's own immune system to recognize, control, or potentially eliminate cancers is revolutionizing therapeutic concepts and changing the standard of care for cancer treatment. Moreover, immunotherapy has the potential to affect a clinical cure, or convert cancer from a fatal disease into a non–life-threatening or chronic disease.

However, despite the current success of immunotherapy not all patients respond, and even those who do often experience toxicities. Thus, there is a growing need to identify predictive and prognostic biomarkers of immune toxicity and immune response.

Clinical biomarkers have been shown to be as important as the therapies they guide in our quest to help match patients with appropriate treatments. Since no single biomarker is fully predictive, it follows that interrogating the tumor microenvironment using a multidimensional approach may provide the most comprehensive insights. Recent advancements in next-generation sequencing assays further enable a deeper understanding of a tumor's molecular profile.

Tumor mutational burden (TMB), a measure of the number of mutations within a tumor genome, is a promising

emerging biomarker that has historically been assessed by whole-exome sequencing (WES). However, recent studies demonstrate that TMB can be effectively estimated using targeted sequencing panels and show high concordance with WES.

The Oncomine solution

The **Ion Torrent[™] Oncomine[™] Tumor Mutation Load Assay** measures this important biomarker, enabling research that explores the correlation between TMB and future therapeutic response in several cancers.

Key highlights:

- Targeted NGS assay (1.65 Mb) for simultaneous assessment of tumor mutational burden and variant profiling in one run
- Low input requirement (as little as 20 ng of DNA) to enable testing on cytological and fine-needle biopsy samples
- Sample-to-report solution with tumor mutation burden and relevant variant insights with Ion Torrent[™] Oncomine[™] Reporter software

Robust assessment of TMB and variant profiling for clinical research

In order to determine comparability with WES, the Oncomine Tumor Mutation Load Assay was sequenced and analyzed with a tumor-only workflow, and compared with WES using tumor/normal samples (Figure 1). Results show a high correlation of $r^2 = 0.925$, confirming that targeted sequencing is a sufficient replacement for WES across different cancer types.

The assay also enables reproducible results that are vital to its clinical-use potential. In the first study, TMB was assessed on 10 pairs of replicates using the lon GeneStudio[™] S5 System and the Oncomine Tumor Mutation Load Assay. The TMB values were highly correlated (r² = 0.9827) and were reproducible across multiple cancer types with high multiplexing capability (Figure 2A). In a second study, 8 replicates of 5 different FFPE cell lines were analyzed by multiple laboratories. Results demonstrated high reproducibility across the different sample types (Figure 2B).

The Oncomine Tumor Mutation Load Assay can also effectively stratify samples with high TMB from samples with low TMB, without the need for a matched normal sample, as demonstrated with colorectal cancer research samples (Figure 3).

"We used the Oncomine Tumor Mutation Load Assay on a retrospective colon cancer cohort, and were able to separate high– and low–mutation load samples, with results correlating well with the MSI status of the tumors. The assay yielded rapid and robust results with its streamlined informatics. Together with other Oncomine assays, we truly have a comprehensive solution for tumor samples."

> Prof. José Carlos Machado, PhD Group Coordinator, IPATIMUP Porto, Portugal

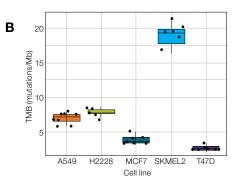


Figure 2A. Reproducibility of Oncomine Tumor Mutation Load Assay on (A) different cancer types and (B) different cell lines.

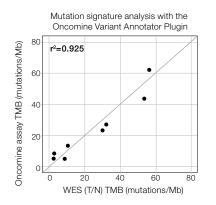


Figure 1. *In silico* analysis of tumor-only somatic mutation counts detected by the Oncomine Tumor Mutation Load Assay, vs. whole-exome mutation count using tumor/normal (T/N) samples.

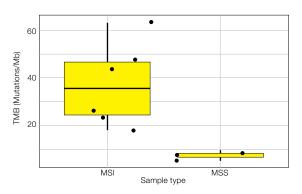


Figure 3. Excellent stratification of colorectal cancer research samples based on assessment of TMB.

Sample-to-report workflow for TMB assessment and variant profiling

A streamlined targeted sequencing workflow

For fast TMB insights, the Oncomine Tumor Mutation Load Assay workflow consists of three key steps (Figure 4). Library and template preparation can be done manually or automated with the Ion Chef[™] System. Samples are multiplexed using the Ion 540 Chip or Ion 550 Chip, and sequenced on the Ion GeneStudio S5 Systems. Integrated informatics takes you from variant caller to a finished report that provides contextual insight on sample-specific variants and their use with respect to labels, guidelines, and current global clinical trials. This process transforms data into knowledge, helping you gain insight into the number of acquired somatic mutations in a tumor, and how these mutations may play a role in responsiveness to future treatments.

The Ion Reporter[™] Software advantage

NGS can make sequencing faster, easier, and more affordable. However, the amount of sequencing data and bioinformatics can be overwhelming. Ion Reporter[™] Software can help you overcome the bioinformatics bottlenecks of NGS data analysis to streamline your process and enable you to focus on finding the biological meaning of your data. Ion Reporter analysis for the Oncomine Tumor Mutation Load Assay has been designed to generate results with a tumor-only workflow. Using germline filtering with 1,000 genomes, 5,000 exomes, and ExAC databases, nonsynonymous variants are accurately called and assessed for TMB (mutations/Mb). A simple readout is provided in addition to detailed analysis of mutation signatures (Figure 5), providing meaningful insights for understanding response to immunotherapies.

Personalizing precision medicine

Ion Torrent[™] Oncomine[™] Reporter software produces clear and intuitive reports customized to support informed decision-making by summarizing relevant biomarkers with information from targeted therapies, guidelines, and global clinical trials.

Figure 4. Streamlined sample-to-data NGS solution to assess TMB, with Ion Reporter software and Oncomine Reporter.

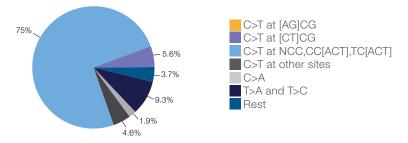


Figure 5. Our carefully designed bioinformatics workflow solution provides insights such as Somatic Mutations Across Substitution Types for researching disease etiology.

ion torrent

Oncomine assay gene content

The Oncomine Tumor Mutation Load Assay is a large targeted NGS assay designed to provide clinical researchers with an accurate assessment of TMB (mutations/Mb) from limited formalin-fixed, paraffin-

embedded (FFPE) samples. The assay covers 1.65 Mb across 409 oncogenes relevant across major cancer types (Figure 6).

Catego	rized by somatic alteration type	Categorized by relevance				
1.65 M	Total bases	4	Genes on 25 labels			
1.2 M	Exonic bases	9	Genes in 12 guidelines			
43	Driver genes annotated for deleterious mutations	123	Genes used in >680 global clinical trials			
61	Driver genes with hotspot mutations					

Oncomine Reporter, September 2018.

В

BL2	CD79A	EPHB1	GRM8	LIFR	MYH9	PMS1	SOX2	WAS	GNAS	ATRX	TSC
ACVR2A	CD79B	EPHB4	GUCY1A2	LPHN3	NCOA1	POT1	SSX1	WHSC1	HFN1A	BAP1	WT
ADAMTS20	CDC73	EPHB6	HCAR1	LPP	NCOA2	POU5F1	STK36	WRN	HRAS	CDK12	
AFF1	CDH1	ERCC1	HIF1A	LRP1B	NCOA4	PPARG	SUFU	XPA	IDH1	CDKN2A	
AFF3	CDH11	ERCC3	HLF	LTF	NFKB1	PPP2R1A	SYK	XPC	IDH2	CDKN2B	
AKAP9	CDH2	ERCC4	HOOK3	LTK	NFKB2	PRDM1	SYNE1	XPO1	JAK2	CEBPA	
APC	CDH20	ERCC5	HSP90AA1	MAF	NIN	PRKAR1A	TAF1	XRCC2	KOR	CHEK1	
ARID2	CDH5	ERG	HSP90AB1	MAFB	NKX2-1	PRKDC	TAF1L	ZNF384	KIT	CHEK2	
ARNT	CDK8	ETS1	ICK	MAGEA1	NLRP1	PSIP1	TAL1	ZNF521	KRAS	CREBBP	
ATF1	CDKN2C	ETV1	IGF1R	MAGI1	NOTCH4	PTGS2	TBX22	ABL1	MAP2K1	DNMT3A	
AURKA	CIC	ETV4	IGF2	MALT1	NSD1	PTPRD	TCF12	AKT1	MAP2K2	FANCA	
AURKB	CKS1B	EXT1	IGF2R	MAML2	NUMA1	PTPRT	TCF3	AKT2	MAP2K4	FANCD2	
AURKC	CMPK1	EXT2	IKBKB	MAP3K7	NUP214	RALGDS	TCF7L1	AKT3	MAPK1	FBXW7	
BAI3	COL1A1	FAM123B	IKBKE	MAPK8	NUP98	RARA	TCF7L2	ALK	MET	MLH1	
BCL10	CRBN	FANCC	IKZF1	MARK1	PAK3	RECQL4	TCL1A	AR	MPL	MSH2	
BCL11A	CREB1	FANCE	IL2	MARK4	PARP1	REL	TET1	AXL	MTOR	MSH6	
BCL11B	CRKL	FANCG	IL21R	MBD1	PAX3	RHOH	TFE3	BRAF	MYC	NBN	
BCL2	CRTC1	FANCJ	IL6ST	MCL1	PAX5	RNASEL	TGFBR2	CBL	MYCN	NF1	
BCL2L1	CSMD3	FAS	IL7R	MDM2	PAX7	RNF2	TGM7	CCND1	NFE2L2	NF2	
BCL2L2	CTNNA1	FH	ING4	MDM4	PAX8	RNF213	THBS1	CDK4	NRAS	NOTCH1	
BCL3	CTNNB1	FLCN	IRF4	MEN1	PBRM1	RPS6KA2	TIMP3	CDK6	NTRK1	NOTCH2	
BCL6	CYLD	FLI1	IRS2	MITE	PBX1	RRM1	TLR4	CSF1R	NTRK3	NPM1	
BCL9	CYP2C19	FLT1	ITGA10	MLL	PDE4DIP	RUNX1T1	TLX1	DDR2	PDGFRA	PALB2	
BCR	CYP2D6	FLT4	ITGA9	MLL2	PDGFB	SAMD9	TNFAIP3	EGFR	PDGFRB	PIK3R1	
BIRC2	DAXX	FN1	ITGB2	MLL3	PER1	SBDS	TNFRSF14	ERBB2	PIK3CA	PMS2	
BIRC3	DCC	FOXL2	ITGB3	MLLT10	PGAP3	SDHA	TNK2	ERBB3	PIK3CB	PTCH1	
BIRC5	DDB2	FOXO1	JAK1	MMP2	PHOX2B	SDHB	TOP1	ERBB4	PTPN11	PTEN	
BLM	DDIT3	FOXO3	JAK3	MN1	PIK3C2B	SDHC	TPR	ERCC2	RAF1	RADSO	
BLNK	DEK	FOXP1	JUN	MRE11A	PIK3CD	SOHD	TRIM24	ESR1	RET	RB1	
BMPR1A	DICER1	FOXP4	KAT6A	MTR	PIK3CG	SEPT9	TRIM33	EZH2	ROS1	RUNX1	
BRD3	DPYD	FZR1	KAT6B	MTRR	PIK3R2	SGK1	TRIP11	FGFR1	SF3B1	SETD2	
BTK	DST	G6PD	KDM5C	MUC1	PIM1	SH2D1A	TRRAP	FGFR2	SMO	SMARCA4	
BUB1B	EML4	GATA1	KDM6A	MUTYH	PKHD1	SMAD2	TSHR	FGFR3	SRC	SMARCB1	
CARD11	EP300	GATA2	KEAP1	MYB	PLAG1	SMAD4	UBR5	FGFR4	ARID1A	STK11	
CASC5	EP400	GATA3	KLF6	MYCL1	PLCG1	SMUG1	UGT1A1	FLT3	ASXL1	TET2	
CCND2	EPHA3	GDNF	LAMP1	MYD88	PLEKHG5	SOCS1	USP9X	GNA11	ATM	TP53	
CCNE1	EPHA7	GPR124	LCK	MYH11	PML	SOX11	VHL	GNAQ	ATR	TSC1	

Annotated for gain-of-function mutations

Annotated for loss-of-function mutations

Figure 6. Gene content of the Oncomine Tumor Mutation Load Assay. (A) Categories by somatic alteration type and relevance. (B) Full list of genes assayed.

Ordering information

Product	Cat. No.
Oncomine Tumor Mutation Load Assay, Manual Library Preparation	A37909
Oncomine Tumor Mutation Load Assay, Chef-Ready Library Preparation	A37910

For more information about the Oncomine Tumor Mutation Load Assay, go to **thermofisher.com/tmb**

For Research Use Only. Not for use in diagnostic procedures. © 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. COL09189 0419