

CleanPlex® for MGI NGS Panel User Guide

This user guide is for the following products:

- CleanPlex® for MGI OncoZoom® Panel
- CleanPlex® for MGI BRCA1 & BRCA2 Panel
- CleanPlex® for MGI Custom NGS Panel

Get the latest user guide at: www.paragongenomics.com/product_documents/

This document and its contents are proprietary to Paragon Genomics, Inc., and are intended solely for the contractual use of its customer in connection with the use of the product(s) described herein and for no other purpose. This document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever without the prior written consent of Paragon Genomics. Paragon Genomics does not convey any license under its patent, trademark, copyright, or common-law rights nor similar rights of any third parties by this document.

The contents of this document are provided "AS IS." This document may be updated or changed without notice at any time. This information could contain technical inaccuracies, typographical errors and out-of-date information. Use of the information is therefore at your own risk. In no event shall PARAGON GENOMICS, INC. be liable for any special, indirect, incidental or consequential damages resulting from or related to the use of this document.

The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and understood prior to using such product(s). FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY, AND WILL VOID ANY WARRANTY APPLICABLE TO THE PRODUCT(S).

PARAGON GENOMICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED HEREIN.

CleanPlex® for MGI NGS Panels are intended for **Research Use Only**. It may not be used for any other purposes including, but not limited to, use in diagnostics, therapeutics, or in humans. CleanPlex NGS Panels may not be transferred to third parties, resold, modified for resale or used to manufacture commercial products without prior written approval of Paragon Genomics, Inc.

All trademarks are the property of Paragon Genomics, Inc. or their respective owners.

©2019 Paragon Genomics, Inc. All Rights Reserved.

Revision History

Document	Date	Description of Change		
UG1003-01	June 2019	Initial version		
UG1003-02	July 2019	Included Circularization to protocol and workflow		

Table of Content

Ove	erview	4
Prod	luct Information	4
Appli	lications	5
Com	npatible Sequencing Instruments	5
Kit C	Contents	6
Requ	uired Materials and Equipment Not Included	8
Stora	age, Handling, and Usage	10
Work	kflow	11
Prof	tocol	12
Best	Practices	12
Input	t DNA Requirements	14
1A.	Multiplex PCR (mPCR) Reaction	15
1B.	Post-mPCR Purification	17
2A.	Digestion Reaction	20
2B.	Post-Digestion Purification	22
3A.	Second PCR Reaction	24
3B.	Post-Second PCR Purification	27
Circu	ularization	29
Quali	lity Control Prior to Sequencing	29
Reco	ommended Sequencing Length and Depth	29
Sup	oporting Information	30
Clear	nPlex for MGI Single-Indexed PCR Primers	30
Trouk	bleshooting Guide	
Data	Analysis Recommendations for MGISEQ	
Took	anical Cuan art	20

Overview

Product Information

CleanPlex® for MGI NGS Panels are a fast, robust, and versatile solution for target enrichment and library preparation for next-generation sequencing (NGS) on MGISEQ sequencing platforms. CleanPlex for MGI NGS Panels generate highly accurate data from as little as 1 ng of DNA using a fast and simple workflow. CleanPlex for MGI Ready-to-Use NGS Panels are expertly optimized with predesigned primers to generate valuable insights in key cancer and disease research areas. CleanPlex for MGI Custom NGS Panels are made-to-order to target user-defined genomic regions of interest.

CleanPlex for MGI NGS Panels are powered by Paragon Genomics' proprietary CleanPlex Technology, which combines an advanced primer design algorithm and an innovative background cleaning chemistry to generate best-in-class target enrichment performance and efficient use of sequencing reads. The patented CleanPlex background cleaning chemistry effectively removes non-specific PCR products to enable ultra-high multiplexing of amplicons. More than 20,000 amplicons can be multiplexed per primer pool to build large NGS panels that can interrogate megabase-size genomic regions to unlock new applications using a streamlined workflow.

CleanPlex for MGI NGS Panels feature a fast and simple workflow that can be completed in about 3 hours from input DNA to indexed and amplified NGS libraries. The workflow involves just 3 steps, each consisting of a thermal-cycling or incubation reaction followed by a library purification using magnetic beads. Tube-to-tube transfer is minimized throughout the protocol to preserve DNA material and prevent handling errors and sample mix-up. A single-pool CleanPlex for MGI NGS Panel, such as the CleanPlex for MGI OncoZoom Cancer HotSpot Panel, has no tube-to-tube transfer and thus offers the many benefits of a single-tube workflow.

The first step of the CleanPlex workflow is a multiplex PCR reaction that uses target-specific primers to amplify targets of interest. The second step is a digestion reaction that performs background cleaning by removing non-specific PCR products. The third step is a PCR reaction that uses CleanPlex for MGI Indexed PCR Primers to amplify and add sample-level indexes to the NGS libraries. CleanMag® Magnetic Beads are recommended for library purification. After the third step, a circularization step is carried out using the MGIEasy Circularization Kit to generate circularized DNA libraries, which are specific to and required for sequencing on MGI's NGS instruments. See the Workflow section for a detailed depiction of the CleanPlex for MGI workflow.

CleanPlex Target Enrichment and Library Preparation Workflow

3 hours of total assay time, 75 minutes of hands-on time

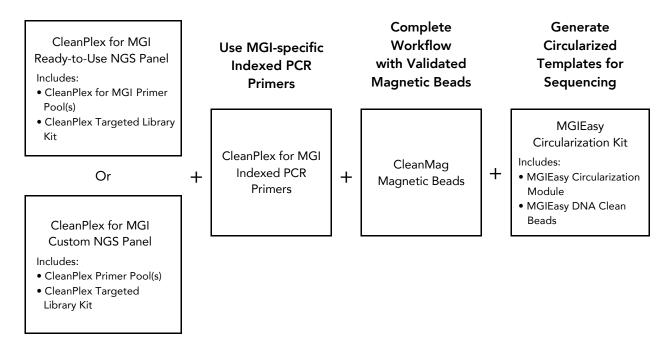
Applications

The CleanPlex for MGI NGS Panels can be used to detect germline and somatic mutations in a wide variety of applications ranging from tumor profiling and early cancer detection to high-throughput genotyping and gene expression analysis. CleanPlex for MGI Custom NGS Panels can be built from 7 to 20,000 amplicons per primer pool to target either or both hotspot position and full genes. Amplicons can be designed with size ranging from 80 to 500 bp to accommodate different sample types and the needs of specific applications.

The table below shows some of the organisms, sample types, and applications that can be studied using CleanPlex for MGI NGS Panels. This is not meant to be an exhaustive or restrictive list.

Organisms	Sample Types	Applications	
• Human	Genomic DNA from whole blood,	Tumor profiling	
• Mammals	tissues, biofluids, buccal swab, dried blood spots (DBSs), feces, circulating	• Variant detection and discovery	
• Fish	cells, and cultured cells	 Disease predisposition 	
• Insects	 Degraded DNA from FFPE tissues 	 Species identification 	
• Plants	• Cell-free DNA (cfDNA) from plasma	 High-throughput genotyping 	
 Microorganisms 	and other biofluids	Gene expression profiling	
	 cDNA from bulk or single cell RNA samples 		

Compatible Sequencing Instruments


CleanPlex for MGI NGS Panels and CleanPlex for MGI Indexed PCR Primers are used to generate target-enriched and indexed NGS libraries that are compatible with all MGISEQ sequencing platforms, including MGISEQ-77, MGISEQ-2000, MGISEQ-2000, and BGISEQ-500 systems.

Kit Contents

The protocol outlined in the CleanPlex for MGI NGS Panel User Guide requires the following components, which need to be ordered separately:

- CleanPlex for MGI Ready-to-Use NGS Panel or CleanPlex for MGI Custom NGS Panel
- CleanPlex for MGI Indexed PCR Primers
- CleanMag Magnetic Beads (or equivalent)
- MGIEasy Circularization Kit (MGI, 1000005259)

Define Your Content

Panel Specifications						
Panel	Number of Primer Pools	Primer Pool Concentration	Number of Amplicons	Average Amplicon Length	Average Library Length	
CleanPlex for MGI OncoZoom Cancer HotSpot Panel	1	5X	601	146 bp	231 bp	
CleanPlex for MGI BRCA1 & BRCA2 Panel	2	5X	218	158 bp	243 bp	
CleanPlex for MGI Custom NGS Panels	Varies	5X	Varies	Varies	Varies	

CleanPlex NGS Panel — Kit Contents, Store at -20°C

		Size	Components				
Panel	SKU	(Reactions)	Primer Pool 1	Primer Pool 2	Primer Pool 3	Primer Pool 4	CleanPlex Targeted Library Kit
CleanPlex for MGI OncoZoom Cancer HotSpot Panel	317001	8	16 µl				1-pool, 8 rxns
	317002	96	192 μΙ				1-pool, 96 rxns
CleanPlex for MGI	317003	8	16 µl	16 µl			2-pool, 8 rxns
BRCA1 & BRCA2 Panel	317004	96	192 µl	192 µl			2-pool, 96 rxns
CleanPlex for MGI Custom NGS Panels		96+		Vai	ries		Varies

A CleanPlex Targeted Library Kit is included in every CleanPlex for MGI Ready-to-Use NGS Panel and CleanPlex for MGI Custom NGS Panel. Please note that the CleanPlex Targeted Library Kit is **not** sold separately.

CleanPlex Targeted Library Kit — Kit Contents, Store at -20°C (not sold separately)

	Configuration		1-Pool		2-Pool		4-Pool	
		Size	8 Rxns	96 Rxns	8 Rxns	96 Rxns	8 Rxns	96 Rxns
Component	Cap Color	SKU	816001	816002	816006	816007	816023	816024
5X mPCR Mix	Green		16 µl	192 μΙ	32 µl	384 µl	64 µl	768 µl
CP Reagent Buffer	White		16 µl	192 μΙ	16 µl	192 µl	16 µl	192 µl
CP Digestion Reagent	Yellow		16 µl	192 μΙ	16 µl	192 µl	16 µl	192 µl
Stop Buffer	Red		32 µl	384 µl	48 µl	576 µl	80 µl	960 µl
5X 2nd PCR Mix	Blue		64 µl	768 µl	64 µl	768 µl	64 µl	768 µl
TE Buffer	Clear		500 µl	4 ml	500 µl	4 ml	500 μl	4 ml

Required Materials and Equipment Not Included

CleanPlex Indexed PCR Primers (visit <u>www.paragongenomics.com/store</u> for more indexing options)

CleanPlex for MGI Single-Indexed PCR Primers—Store at -20°C

	SKU	Size (Reactions)	Format
CleanPlex for MGI Single-Indexed PCR	318001	32	16 indexes (16 tubes)
Primers, Set A	318007	96	
CleanPlex for MGI Single-Indexed PCR	318002	32	16 indexes (16 tubes)
Primers, Set B	318008	96	
CleanPlex for MGI Single-Indexed PCR	318003	32	16 indexes (16 tubes)
Primers, Set C	318009	96	
CleanPlex for MGI Single-Indexed PCR	318004	32	16 indexes (16 tubes)
Primers, Set D	318010	96	
CleanPlex for MGI Single-Indexed PCR	318005	32	16 indexes (16 tubes)
Primers, Set E	318011	96	
CleanPlex for MGI Single-Indexed PCR	318006	32	16 indexes (16 tubes)
Primers, Set F	318012	96	

 CleanMag Magnetic Beads, or equivalent — eg. Agencourt™ AMPure™ XP Kit (Beckman Coulter, Cat. No. A63880, A63881, or A63882)

CleanMag Magnetic Beads — Store at 2–8°C

	SKU	Size (Volume)	Reactions
CleanMag Magnetic Beads, 1 ml	718001	1 ml	~9
CleanMag Magnetic Beads, 5 ml	718002	5 ml	~45
CleanMag Magnetic Beads, 60 ml	718003	60 ml	~540
CleanMag Magnetic Beads, 450 ml	718004	450 ml	~4,050

• MGIEasy Circularization Kit (MGI, Cat. No.1000005259, 16 reactions)

- For PCR tubes or strips, CleanMag Magnetic Rack, for 0.2 ml 8/12-tube PCR Strip (SKU 719001) or equivalent magnetic racks designed for PCR strip workflows
- For 96-well PCR plates, CleanMag Magnetic Plate, for 96-well PCR plates (SKU 719002) or equivalent magnetic plates designed for PCR plate workflows

CleanMag Magnetic Rack & Plate					
SKU Fit					
CleanMag Magnetic Rack	719001	2 rows of 12 tubes each for PCR strip tubes			
CleanMag Magnetic Plate 719002 96 well PCR plates, Full or semi- skirted compati					

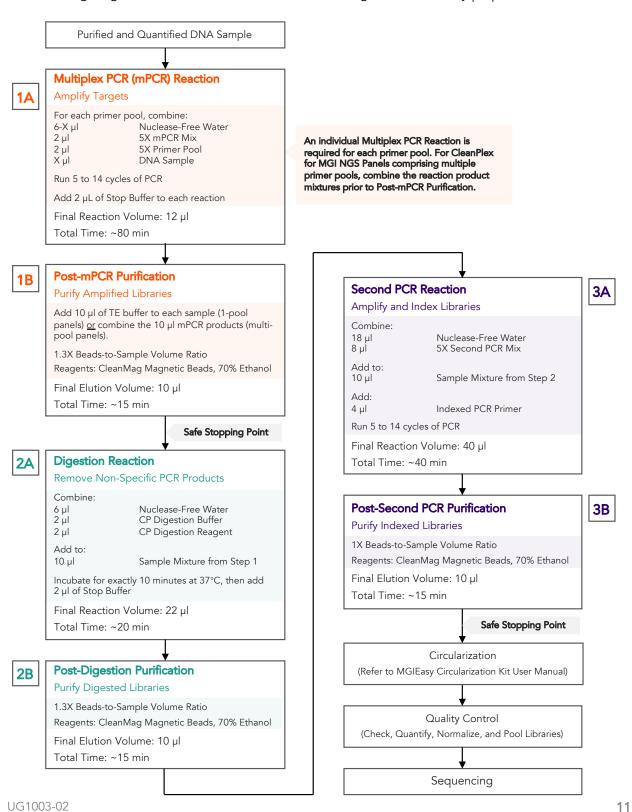
- 70% ethanol (freshly prepared)
- Nuclease-free water
- Nuclease-free, low bind, thin-wall PCR strip tubes with attached caps, or 96-well PCR plate with adhesive film
- Pipettors and low-retention filtered pipette tips
- Thermal cycler
- Mini-centrifuge, 96-well plate centrifuge
- Qubit® Fluorometer and dsDNA HS (high sensitivity) Assay Kit, or equivalent
- Agilent® 2100 Bioanalyzer® Instrument and Agilent High Sensitivity DNA Kit, or equivalent

Storage, Handling, and Usage

CleanPlex for MGI NGS Panels and CleanPlex for MGI Indexed PCR Primers are shipped on blue ice (ice packs). Upon receipt, immediately store CleanPlex for MGI NGS Panels and CleanPlex for MGI Indexed PCR Primers at -20°C in a constant-temperature freezer. Do not store in a freezer with auto-defrost or frost-free features. Do not store at -80°C.

CleanMag Magnetic Beads is shipped at room temperature or on blue ice (ice packs). Upon receipt, immediately store CleanMag Magnetic Beads at 2°C to 8°C in a constant-temperature refrigerator. Do not freeze. Do not store at -20°C.

Always ensure that all frozen components are fully thawed and have been vortexed and spun down to bring all liquids to the bottom of the tubes prior to use.


The components containing enzymes (5X mPCR Mix, CP Digestion Reagent and 5X 2nd PCR Mix) are specially formulated for storage at -20°C without freezing to avoid freeze-thaw cycles to retain their full activity. Please avoid storing these components below -23°C.

CleanPlex for MGI NGS Panels are developed, designed and sold exclusively for research use only. None of the products or their individual components have been tested for use in diagnostic procedures.

For hazard information, please refer to the Safety Data Sheet (SDS), which is available upon request.

Workflow

The following diagram illustrates CleanPlex NGS Panel's targeted NGS library preparation workflow.

UG1003-02

Protocol

Best Practices

- When using the kit for the first time, briefly vortex and spin the tubes in the kit to bring the liquid to
 the bottom of the tubes. Store the tubes containing enzymes (5X mPCR Mix, CP Digestion Reagent,
 2nd PCR Mix) on ice during their respective procedures. All other components, including primer
 pools, may be thawed at room temperature, mixed thoroughly by vortexing and spun-down before
 use.
- Use good laboratory practices to minimize cross-contamination. If possible, perform PCR setup in an
 isolated area or room to minimize cross-contamination between samples, multiplex PCR (mPCR)
 primers, or indexed PCR primers. Always change pipette tips between samples and change gloves
 frequently. Clean all workstations and tools with 10% bleach followed by water, then alcohol at the
 end of each work day.
- Use a calibrated PCR thermal cycler as specified by the manufacturer's user guide. Validated thermal cyclers include Bio-Rad C1000, Eppendorf Mastercycler series, and Applied Biosystems GeneAmp PCR System 9700. Generally, a thermal cycler set with the highest ramp speed, such as 5°C/second and higher, is not recommended. For thermal cyclers with adjustable ramp speed, we recommend 3°C/second up and 2°C/second down speed, or use the default setting (no ramp adjustment).
- To ensure accurate assembly of reactions, withdraw viscous solution (such as 5X mPCR Mix, CP Digestion Reagent, and 5X 2nd PCR Mix) slowly from containers and dispense it slowly into the reaction mixtures. A good practice is to remove excess from outside of tip and rinse the tip by pipetting up and down several times after dispensing viscous solutions into aqueous mixture. Thoroughly mix each assembly to ensure solutions are homogenous prior to PCR and incubations. Remember to briefly spin the PCR tubes or 96-well PCR plate after mixing.
- Always keep working solutions and PCR products on ice until needed. Combine PCR mixes just immediately prior to use and do not prolong storage of combined PCR mixes and PCR products.
- The protocol is designed to minimize the number of tube-to-tube transfer in order to avoid or reduce sample loss. For a single-pool CleanPlex for MGI NGS Panel, the entire protocol is performed following a single-tube workflow, with no tube-to-tube transfers. For a multi-pool CleanPlex for MGI NGS Panel, the individual mPCR products from the primer pool-specific reactions are combined into one tube, and the remaining protocol is carried out using a single-tube workflow.
- When working with 96-well PCR plates, take extra care to ensure thorough mixing of all samples and proper sealing to avoid cross contamination between samples.

- Magnetic bead purification steps should be performed carefully to minimize residual supernatant
 and ethanol washes, and to minimize bead loss. Using a strong magnetic rack or plate specifically
 designed for manual handling of PCR tubes or 96-well PCR plates is critical for a successful bead
 purification
- Always pre-warm thermal cycles, pre-warm a water bath or heat block to 37°C.
- Assign sample indexes to specific samples before starting the protocol.
- Always prepare a master mix of reagents when working with multiplex reactions. Prepare ~5% excess of each master mix to allow for pipetting losses. A master mix calculation sheet can be downloaded from the Product Documents page on the Paragon Genomics website at www.paragongenomics.com/product_documents/.

Input DNA Requirements

Refer to the following chart for the amounts of input DNA.

Panel	DNA Input Range (per pool)	Recommended gDNA Input (per pool)	Recommended FFPE DNA Input (per pool)
CleanPlex for MGI OncoZoom Cancer HotSpot Panel	10–40 ng	10 ng	20 ng
CleanPlex for MGI BRCA1 & BRCA2 Panel	10-40 ng	10 ng	20 ng
CleanPlex for MGI Custom NGS Panels (Human genotyping)	1–40 ng	10 ng	20 ng
CleanPlex for MGI Custom NGS Panels (Human somatic mutation detection)	10–40 ng	10 ng	20 ng

- The maximum volume of DNA input per Multiplex PCR Reaction is 6 μl. For CleanPlex for MGI NGS
 Panels with multiple primer pools, an individual Multiplex PCR Reaction is required for each primer
 pool.
- Qubit dsDNA HS Assay Kit (Thermo Fisher, Cat. No. Q32851 or Q32854) or an equivalent fluorometric method is recommended for measuring DNA concentration. UV spectrophotometry methods (e.g. NanoDrop™ spectrophotometer) are not recommended because it can significantly overestimate the DNA concentration.
- 1–40 ng of human genomic DNA from normal or FFPE tissue is recommended for each Multiplex PCR Reaction depending on the panel and application.
- A minimum of 10 ng of human genomic DNA is recommended for detecting somatic variants with 1% frequency.
- 1–10 ng of DNA is recommended for genotyping applications that do not require low allele frequency detection. In rare cases where DNA is extremely limited and the application allows, 0.1 ng of DNA can be used.
- When DNA quality is low or unknown (such as DNA from FFPE tissues), higher DNA input can be used to produce better library quality and reach lower limits of detection.
- For panels specific to organisms other than humans, DNA input need will vary based on the genome size of the organism. For example, significantly less DNA input is needed for bacteria panels as each nanogram of DNA contains many more copies of the target DNA. An input titration can be done to determine minimum DNA input.
- Avoid diluting DNA samples to < 10 ng/µl for prolonged storage as lower concentrations of DNA are less stable in solution. Avoid freeze-thawing dilute DNA samples when possible, and measure sample concentrations immediately prior to use to avoid inaccurate sample input.

1A. Multiplex PCR (mPCR) Reaction

1A.1. Using thin-wall PCR strip tubes (or a 96-well PCR plate), prepare the mPCR Reaction Mixture by adding components in the following order on ice or a cold block. For CleanPlex for MGI NGS Panels with multiple primer pools, prepare individual reaction for each primer pool.

Note: When working with multiple samples, normalize all DNA samples to the same concentration, and prepare a master mix of mPCR Reaction Mixture for each primer pool. Mix well, aliquot into individual tubes, then add the recommended DNA input to each reaction. For CleanPlex for MGI NGS Panels with multiple primer pools, prepare a separate mPCR Reaction Mixture for each primer pool for each sample.

Note: When working with multi- pool panels such as the CleanPlex for MGI BRCA1 & BRCA2 Panel, the recommended (or specified) amount of DNA is to be added to each pool, and not divided between the pools.

mPCR Reaction Mixture						
Reagent	Cap Color	Volume per reaction				
Nuclease-Free Water	_	6 – X μl				
5X mPCR Mix	Green	2 μΙ				
5X mPCR Primer Pool	Varies	2 μΙ				
DNA Sample	_	Χμl				
Total Volume per reaction 10 μl						

Important! 5X mPCR Mix and 5X mPCR Primer Pool(s) are viscous. Pipette slowly, remove any excess reagent on the outside of the pipette tip, and rinse tip in solution when handling these reagents.

1A.2. Close the caps of the PCR tubes or seal the PCR plate with adhesive film, spin briefly to bring down the liquid, mix thoroughly by pipetting up and down at least 5 times or by vortexing vigorously for at least 5 seconds until homogenous. Avoid unnecessarily prolonged vortexing. Spin briefly to collect the liquid.

Note: It is crucial that the reaction mixture is homogenous prior to thermal cycling. Incomplete mixing can cause decreased yield and increase nonspecific product formation.

Note: If using a PCR plate, use an applicator tool to firmly secure each reaction well and around the perimeter of the plate to prevent evaporation during thermal cycling.

1A.3. Load the tubes/plate in the thermal cycler and run the following thermal cycling protocol to amplify target DNA regions. Use the table below to determine the mPCR thermal cycling conditions for specific CleanPlex for MGI NGS Panels.

mPCR Thermal Cycling Protocol							
Step	Temperature	Time	Ramping*	Cycles			
Initial Denaturation	95 °C	10 min	-	1			
Denaturation	98 °C	15 sec	3 °C/s	- See table below			
Annealing/Extension	60 °C	See table below	2 °C/s	- See table below			
Hold	10 °C	∞					

^{*} For thermal cyclers without adjustable ramp speed, use the default settings.

Panel Specific mPCR Thermal Cycling Conditions		
Panel	Panel Annealing/Extension Time mPCR Cycle N	
CleanPlex for MGI OncoZoom Cancer HotSpot Panel	5 min	10
CleanPlex for MGI BRCA1 & BRCA2 Panel	5 min	10
CleanPlex for MGI Custom NGS Panels	5 min for 7–2,000 amplicons per pool 8 min for 2,000–5,000 amplicons per pool 16 min for 5,000–20,000 amplicons per pool	10

1A.4. Immediately add 2 μ l of Stop Buffer (red cap) into each tube/well and mix by spinning briefly then vortexing. Spin again briefly to collect the liquid. The volume of each sample is approximately 12 μ l.

Note: Do not allow samples to hold at 10 °C for longer than 30 minutes before adding Stop Buffer.

1A.5. Proceed to Step 1B. Post-mPCR Purification.

Important. Do not stop and store PCR products after multiplex PCR reaction. Add Stop Buffer then proceed to Step 1B, Post-mPCR Purification immediately.

1B. Post-mPCR Purification

Important! Bring magnetic beads to room temperature and vortex thoroughly to disperse the beads before each use. Dispense slowly and carefully. Keep the outside of the pipette free from droplets.

Important! Use freshly prepared 70% ethanol. Prepare the 70% ethanol solution by mixing 100% ethanol with nuclease-free water at volume ratios of 7 parts 100% ethanol 3 parts nuclease-free water. Do not top off one liquid with the other in a volumetric container because the volumetric ratio will not be accurate. When water and ethanol are mixed, the final volume will be less than the sum of individual volumes.

- 1B.1. Open the tubes or carefully remove the adhesive film from the PCR plate. For CleanPlex for MGI NGS Panels comprising of one primer pool, add 10 μ l of TE buffer to each sample. For CleanPlex for MGI NGS Panels with multiple primer pools, combine the 12 μ l multiplex PCR products for each sample. See table below for examples.
- 1B.2. Vortex the magnetic beads suspension vigorously until homogenous. Perform a **1.3X** bead-based purification by adding magnetic beads to the combined sample as described in the table below. Mix by pipetting up and down at least 5 times or vortex vigorously for at least ~5 seconds until homogenous.

Note: Accurate dispensing of magnetic beads is critical for each purification step. Aspirate and dispense slowly, taking care to completely transfer the required volume of beads and do not allow droplets of beads on the outside of the tip to be added to the sample.

Note: Ensure the mixture is thoroughly mixed before incubation, especially when working in a 96-well PCR plate format. Incomplete mixing can result in lowered yields and/or increased background in the final library.

Post-mPCR Purification — 1.3X Beads-to-Sample Volume Ratio				
	1-Pool	2-Pool	3-Pool	4-Pool
Volume of Combined Sample per reaction	22 μl (12 μl of sample + 10 μl of TE Buffer)	24 μΙ	36 µl	48 µl
Volume of Magnetic Beads per reaction	29 µl	31 µl	47 µl	62 µl

- 1B.3. Incubate the mixture for 5 minutes at room temperature.
- 1B.4. Briefly spin the tubes/plate. Place the tubes/plate on a magnetic rack and incubate for at least 2 minutes until the liquid is clear. The beads will be drawn onto one side of each tube/well. While keeping the tubes/plate on the magnetic rack, carefully remove and discard the supernatant without disturbing the beads.

Note: If the magnetic beads are aspirated into the pipette tip at any point during the purification process, dispense the solution back into tube, remove the tip, allow the beads to migrate toward the magnet again, then repeat.

Note: When working with 96-well PCR plates, avoid touching the side of the well with the pipette tip when removing supernatant to minimize wicking up of liquid to the side of the well.

1B.5. Cap/seal the tubes/plate, and briefly spin again to bring down the remaining liquid. Place the tubes/plate on the magnetic rack to gather the beads. Using a 10 µl pipette tip, carefully remove all residual supernatant from the bottom of the tube/well without disturbing the beads.

Note: Removing all residual supernatant from the Multiplex PCR Reaction prior to washing is critical to obtaining a clean, high-quality library.

Note: When working with 96-well PCR plates, a strong compatible magnetic rack is essential. If your magnetic rack cannot collect the magnetic beads effectively, please look into a replacement.

- 1B.6. Add 180 µl of freshly prepared 70% ethanol to each tube/well. Remove the tubes/plate from the magnetic rack and place the clear side of the tubes/wells (the side without beads) against the magnet to move the beads from one side of each tube/well to the other. **Do not vortex.**Carefully remove and discard the supernatant without disturbing the beads.
- 1B.7. Repeat step 1B.6.
- 1B.8. After the second wash, briefly spin the tubes/plate to bring down all remaining liquid. Place the tubes/plate on the magnet rack to gather the beads. Carefully remove the residual ethanol in each tube/well. Keeping the tubes/plate on the magnetic rack, air-dry the beads at room temperature for 5 minutes. **Do not over or under dry.**

Note: Over-dried beads can dislodge from the side of the tube and lead to cross contamination, and they are also more difficult to resuspend during elution. Residual ethanol inhibits PCR and will result in reduced yield. Especially when working with 96-well PCR plates, make sure all residual ethanol is dried (may take longer than 5 minutes) before going to the next step.

1B.9. Add 10 µl TE buffer to each tube/well. Briefly spin and vortex to resuspend the beads. The DNA will be immediately released from the beads (there is no need to remove the beads). Spin briefly to collect the liquid.

1B.10. Proceed to Step 2A. Digestion Reaction.

Safe Stopping Point. Purified products may be stored at $2-8^{\circ}$ C for up to 1 hour or at -20° C for up to 24 hours.

2A. Digestion Reaction

Note: After starting the Digestion Reaction, the samples cannot be stored and must continue to Post-Digestion Purification and Second PCR Reaction. Plan accordingly.

Note: When thawing CP Reagent Buffer, ensure all visible precipitate has dissolved. Bring to room temperature and vortex to dissolve the precipitate as needed.

Note: Pre-warm a thermal cycler or heating unit to 37°C before beginning the Digestion Reaction.

2A.1. Prepare Digestion Reaction Master Mix and add to each purified sample from Step 1B. The magnetic beads in the sample mixture do not affect the Digestion Reaction.

Note: When working with multiple reactions, prepare a master mix. Mix well, then add 10 μ l of master mix to each sample.

Digestion Reaction Master Mix		
Reagent	Cap Color	Volume per reaction
Nuclease-Free Water	_	6 μΙ
CP Reagent Buffer	White	2 μΙ
CP Digestion Reagent	Yellow	2 μΙ
Total Volume per reaction		10 µl

Digestion Reaction Mixture		
Reagent Volume per read		
Digestion Reaction Master Mix	10 μΙ	
Purified Sample from Step 1B	10 μΙ	
Total Volume per reaction	20 μΙ	

2A.2. Mix by pipetting up and down at least 5 times or vortexing vigorously for at least 5 seconds until homogenous. Avoid unnecessarily prolonged vortexing. Spin briefly to collect the liquid.

Note: It is crucial that the reaction mixture is homogenous prior to incubation. Incomplete mixing can cause digestion of the library or under-digestion of nonspecific products.

Note: If using a PCR plate, use an applicator tool to firmly secure each reaction well and around the perimeter of the plate to prevent evaporation during incubation.

- 2A.3. Incubate at 37°C for exactly 10 minutes. **Do not** incubate shorter or longer than 10 minutes.
- 2A.4. Immediately add 2 μ l of Stop Buffer (red cap) to each tube/well and mix by spinning briefly then vortexing. Spin again briefly to collect the liquid. The volume of each sample is approximately 22 μ l.
- 2A.5. Proceed to Step 2B. Post-Digestion Purification immediately.

Important! Do not stop and store samples after the Digestion Reaction. Proceed to Step 2B. Post-Digestion Purification immediately.

2B. Post-Digestion Purification

2B.1. Vortex the magnetic beads suspension to disperse beads. Perform a 1.3X bead-based purification by adding 29 μ I of magnetic beads to each sample. Mix by pipetting up and down at least 5 times or vortex vigorously for at least 5 seconds until homogenous.

Note: Accurate dispensing of magnetic beads is critical for each purification step. Aspirate and dispense slowly, taking care to completely transfer the required volume of beads and do not allow droplets of beads on the outside of the tip to be added to the sample.

Note: Ensure the mixture is thoroughly mixed before proceeding, especially when working with 96-well PCR plates.

Post-Digestion Purification — 1.3X Beads-to-Sample Volume Ratio	
Reagent Volume per reaction	
Digestion Reaction Product	22 μΙ
Magnetic Beads	29 μΙ

- 2B.2. Incubate the mixture for 5 minutes at room temperature.
- 2B.3. Briefly spin the tubes/plate. Place the tubes/plate on a magnetic rack and incubate for at least **2 minutes until the liquid is clear**. The beads will be drawn onto one side of each tube/wall. While keeping the tubes/plate on the magnetic rack, carefully remove and discard the supernatant without disturbing the beads.
- 2B.4. Cap/seal the tubes/plate, and briefly spin again to bring down the remaining liquid. Place the tubes/plate on the magnetic rack to gather the beads. Using a 10 µl pipette tip, carefully remove all residual supernatant from the bottom of the tube/well without disturbing the beads.

Note: Removing all supernatant after the Digestion Reaction is critical to obtaining a clean, high-quality library.

- 2B.5. Add 180 µl of freshly prepared 70% ethanol to each tube/well. Remove the tubes/plate from the magnetic rack and place the clear side of the tubes/wells (the side without beads) against the magnet to move the beads from one side of each tube/well to the other. **Do not vortex.**Carefully remove and discard the supernatant without disturbing the beads.
- 2B.6. Repeat step 2B.5.

2B.7. After the second wash, briefly spin the tubes/plate to bring down all remaining liquid. Place the tubes/plate on the magnetic rack to gather the beads. Carefully remove the residual ethanol left behind in each tube/well. Keeping the tubes/plate on the magnetic rack, air-dry the beads at room temperature for 5 minutes. **Do not over or under dry.**

Note: Over-dried beads can dislodge from the side of the tube and lead to cross contamination, and they are also more difficult to resuspend during elution. Residual ethanol inhibits PCR and will result in reduced yield. Especially when working with 96-well PCR plates, make sure all residual ethanol is dried (may take longer than 5 minutes) before going to the next step.

- 2B.8. Add 10 µl TE buffer to each tube/well. Briefly spin and vortex to resuspend the beads and elute DNA from the beads (there is no need to remove the beads). Spin briefly to collect the liquid.
- 2B.9. Proceed to Step 3A. Second PCR immediately.

Important! Do not stop and store samples after Post-Digestion Purification. Proceed to Step 3A. Second PCR immediately.

3A. Second PCR Reaction

Note: Remember to assign a specific index (CleanPlex for MGI Indexed PCR Primers) to each sample before starting this step.

3A.1. Thaw Indexed PCR Primers, vortex thoroughly, then spin briefly to collect the liquid. Prepare Second PCR Master Mix and add to each purified sample from Step 2B. Then add a unique (combination of) Indexed PCR Primer(s) to each sample.

Note: When working with multiple samples, prepare a master mix. Mix well, then add 26 μ l of master mix to each sample.

Reagent Cap Color	Volume per reaction
N. I. E. M.	
Nuclease-Free Water —	18 µl
5X 2nd PCR Mix Blue	8 µl
Total Volume per reaction	26 µl

Second PCR Reaction Mixture		
Reagent	Volume per reaction	
Second PCR Reaction Master Mix	26 μΙ	
Purified Sample from Step 2B	10 μΙ	
CleanPlex for MGI Indexed PCR Primer	4 μΙ	
Total Volume per reaction	40 µl	

Important! When handling Indexed PCR Primers, take extra care to prevent cross contamination by opening one tube at a time and changing pipette tips and gloves as necessary. Avoid touching the opening and inside of the tubes with your hands, pipette channel, or anything non-disposable.

3A.2. Close the caps of the PCR tubes or seal the PCR plate with adhesive film. Spin briefly to collect the liquid, then mix thoroughly by pipetting up and down at least 5 times or vortexing vigorously for at least 5 seconds until homogenous. Avoid unnecessarily prolonged vortexing. Spin briefly to collect the liquid.

Note: It is crucial that the reaction mixture is homogenous prior to thermal cycling. Incomplete mixing can cause decreased yield and increase non-specific product formation.

Note: If using a PCR plate, use an applicator tool to firmly secure each reaction well and around the perimeter of the plate to prevent evaporation during thermal cycling.

3A.3. Load the tubes/plate in the thermal cycler, and run the following thermal cycling protocol to amplify and index the libraries. The Second PCR thermal cycling protocol depends on the starting DNA input amount and DNA quality. Generally, lower quality DNA, lower DNA input amount, or fewer amplicons in a panel requires more PCR cycles. See tables below for thermal cycling protocol and cycle number suggestions for CleanPlex for MGI Ready-to-Use NGS Panels and CleanPlex for MGI Custom NGS Panels.

Note: Use the amount of DNA input per pool to determine the correct cycles, not the combined DNA input from all pools. For example, if 10 ng of DNA sample was added to each of the CleanPlex for MGI BRCA1 & BRCA2 Panel pools, use 10 ng to determine the Second PCR cycle number.

Note: Use the number of amplicons per pool to determine the correct Second PCR cycles for CleanPlex for MGI Custom NGS Panels. Typically, a custom multipool panel from a single design will evenly splits the total amplicons into each pool. Please contact Technical Support if you have any questions about your custom panel.

Second PCR Reaction — Thermal Cycling Protocol					
Step	Temperature	Time	Ramping*	Cycles	
Initial Denaturation	95 °C	10 min	-	1	
Denaturation	98 °C	15 sec	3 °C/s	- See table below	
Annealing/Extension	60 °C	75 sec	2 °C/s		
Hold	10 °C	∞			

^{*} For thermal cyclers without adjustable ramp speed, use the default settings.

CleanPlex for MGI Ready-to-Use NGS Panels — Second PCR Cycle Number			
Panel	10 ng of High Quality gDNA per Pool	10 ng of Low Quality DNA per Pool (eg. FFPE DNA)	
CleanPlex for MGI OncoZoom Cancer HotSpot Panel	9	10	
CleanPlex for MGI BRCA1 & BRCA2 Panel	13	14	

25

UG1003-02

CleanPlex for MGI Custom NGS Panels — Second PCR Cycle Number

Number of Amplicons per Pool	10 ng of High Quality gDNA per Pool	10 ng of Low-Quality DNA per Pool (eg. FFPE DNA)
7 - 100	13	14
101 - 200	11	12
201 - 500	10	11
501 – 1,000	9	10
1,001 – 2,000	8	9
2,001 – 5,000	7	8
5,001 – 12,000	6	7
12,001 – 20,000	5	6

Note: The Second PCR thermal cycling protocol may require additional optimization for CleanPlex for MGI Custom NGS Panels.

Second PCR Reaction — Input Specific Cycle Number		
Input DNA per Pool	Change in Cycle Number	
0.1 ng	+ 7	
1 ng	+ 3 to + 4	
5 ng	+ 1	
10 ng	-	
20 ng	– 1	
40 ng	-2	
Low Quality DNA	+ 1 to + 2	

3A.4. Proceed to Step 3B. Post-Second PCR Purification immediately after cycle completion. Do not allow PCR product to hold at 10 °C for more than 30 minutes.

Important. Do not stop and store PCR product after Second PCR. Proceed to 3B, Post-Second PCR purification immediately.

3B. Post-Second PCR Purification

3B.1. Vortex the magnetic beads suspension to disperse beads. Perform a 1X bead-based purification by adding $40 \, \mu l$ of magnetic beads to each sample. Mix by pipetting up and down at least 5 times or by vortexing vigorously for at least 5 seconds until homogeneous.

Note: Accurate dispensing of magnetic beads is critical for each purification step. Aspirate and dispense slowly, taking care to completely transfer the required volume of beads and do not allow droplets of beads on the outside of the tip to be added to the sample.

Note: Ensure the solution is thoroughly mixed before proceeding.

Post-Second PCR Purification — 1X Beads-to-Sample Volume Ratio	
Reagent Volume per reaction	
Second PCR Reaction Product	40 μΙ
Magnetic Beads	40 μΙ

- 3B.2. Incubate the mixture for 5 minutes at room temperature.
- 3B.3. Briefly spin the tubes/plate. Place the tubes/plate on a magnetic rack and incubate for at least 2 minutes until the liquid is clear. The beads will be drawn onto one side of each tube/wall. While keeping the tubes/plate on the magnetic rack, carefully remove and discard the supernatant without disturbing the beads.
- 3B.4. Cap/seal the tubes/plate, and briefly spin again for to bring down the remaining liquid. Place the tubes/plate on the magnetic rack to gather the beads. Using a 10 µl pipette tip, carefully remove all residual supernatant from the bottom of the tube/well without disturbing the beads.

Note: Removing all supernatant is critical in obtaining a clean, high-quality library.

- 3B.5. Add 180 µl of freshly prepared 70% ethanol to each tube/well. Remove the tubes/plate from the magnetic rack and place the clear side of the tubes/wells (the side without beads) against the magnet to move the beads from one side of the tube/well to the other. **Do not vortex.** Carefully remove and discard the supernatant without disturbing the beads.
- 3B.6. Repeat step 3B.5.

3B.7. After the second wash, briefly spin the tubes/plate to bring down all remaining liquid. Place the tubes/plate on the magnetic rack to gather the beads. Carefully remove the residual ethanol left behind in each tubes/well. Keeping the tubes/plate on the magnetic rack, air-dry the beads at room temperature for 5 minutes. **Do not over or under dry.**

Note: Over-drying and under-drying the beads can lead to reduced yield.

3B.8. Add 10 μ l TE buffer to each tube/well. Briefly spin and vortex to resuspend the beads and elute DNA from the beads. Spin briefly to collect the liquid. At this point the library is complete and can be stored with beads at -20° C.

Note: To perform Circularization, use a magnetic rack to separate the beads. Avoid transferring the beads when pipetting the clear supernatant for Circularization.

Safe Stopping Point. Purified products may be stored with beads at –20°C until ready to perform Circularization. When taking the library out for Circularization, vortex briefly and place the tubes or plate on a magnetic rack to pull the beads to one side. Avoid pipetting the beads.

Circularization

Please refer to the MGIEasy Circularization Kit User Manual for instructions on circularizing the templates for sequencing on MGI platforms.

Quality Control Prior to Sequencing

Check library quality and concentration using an Agilent 2100 Bioanalyzer Instrument and Agilent High Sensitivity dsDNA Kit, or a qPCR-based method. The final library can also be measured using a Qubit 3.0 Fluorometer; however, this method will not differentiate potential background from the actual library. To confirm the quality of the DNA, it is highly recommended that a high sensitivity fragment analyzer is used to visualize the peak shape, size, and potential background concentration.

Using the concentrations of the library peak(s) only, normalize and pool samples of different index combinations for sequencing.

Recommended Sequencing Length and Depth

All CleanPlex for MGI Ready-to-Use NGS Panels are designed to be compatible with PE 100 bp reads. Custom panels also have standard PE100 designs unless otherwise decided and communicated between the customer and design team.

For detecting germline mutations, the recommended average sequencing read depth is 500X. For detecting somatic mutations down to 1% minor allele frequency, the recommended average sequencing read depth is 5,000X.

Recommended Sequencing Depth					
Panel	Application	Average Read Depth			
CleanPlex for MGI OncoZoom Cancer HotSpot Panel	Somatic Mutations	5,000X			
CleanPlex for MGI BRCA1 & BRCA2 Panel	Somatic Mutations	5,000X			
Clearifiex for Iviol Broat & Broaz Panel	Germline Mutations	500X			

Supporting Information

CleanPlex for MGI Single-Indexed PCR Primers

Primer Sequences

Each sample is indexed by a pair of Indexed PCR Primers for sequencing on MGISEQ platforms. XXXXXXXXX denotes the index region of the primer. Index sequences are listed below.

Universal primer

5'-Phos-GAACGACATGGCTACGATCCGACT*T-3'

Single-Indexed Primer

 $\verb|5'-TGTGAGCCAAGGAGTTGXXXXXXXXXXTTGTCTTCCTAAGACCGCTTGGCCTCCGACT*T-3'|$

Indexed Primers

CleanPlex for MGI Single-Indexed PCR Primers Set A

16 indexes, 32 reactions (SKU 318001) 16 indexes, 96 reactions (SKU 318007)

CleanPlex for MGI Single-Indexed PCR Primers Set B

16 indexes, 32 reactions (SKU 318002) 16 indexes, 96 reactions (SKU 318008)

Index	Bases for Sample Sheet	Index Sequence	Index	Bases for Sample Sheet	Index Sequence
Barcode 1	TAGGTCCGAT	ATCGGACCTA	Barcode 35	GTTCGCTCTA	TAGAGCGAAC
Barcode 2	GGACGGAATC	GATTCCGTCC	Barcode 36	TCTCACACAT	ATGTGTGAGA
Barcode 3	CTTACTGCCG	CGGCAGTAAG	Barcode 37	CTGTTAGGAT	ATCCTAACAG
Barcode 4	ACCTAATTGA	TCAATTAGGT	Barcode 38	CGCAGACGCG	CGCGTCTGCG
Barcode 13	CGGCAATCCG	CGGATTGCCG	Barcode 39	AAGGATCATC	GATGATCCTT
Barcode 14	ATCAGGATTC	GAATCCTGAT	Barcode 41	TTAGATGCAT	ATGCATCTAA
Barcode 15	TCATTCCAGA	TCTGGAATGA	Barcode 42	GTCCAGAGCT	AGCTCTGGAC
Barcode 16	GATGCTGGAT	ATCCAGCATC	Barcode 43	CACGTGATAG	CTATCACGTG
Barcode 25	TAGAGGACAA	TTGTCCTCTA	Barcode 44	CCACTAGTCC	GGACTAGTGG
Barcode 26	CCTAGCGAAT	ATTCGCTAGG	Barcode 45	TGGACTTGGC	GCCAAGTCCA
Barcode 28	GCTGAGCTGT	ACAGCTCAGC	Barcode 46	GCTTGACAGG	CCTGTCAAGC
Barcode 29	AACCTAGATA	TATCTAGGTT	Barcode 47	AAGACCTCTA	TAGAGGTCTT
Barcode 30	TTGCCATCTC	GAGATGGCAA	Barcode 48	AGTTGCCATA	TATGGCAACT
Barcode 32	CGCTATCGGC	GCCGATAGCG	Barcode 49	ATGTACGCAG	CTGCGTACAT
Barcode 33	GCAACGATGG	CCATCGTTGC	Barcode 50	TTAATGAGAT	ATCTCATTAA
Barcode 34	TAATCGTTCA	TGAACGATTA	Barcode 51	TGCGCCACTT	AAGTGGCGCA

CleanPlex for MGI Single-Indexed PCR Primers Set C

16 indexes, 32 reactions (SKU 318003) 16 indexes, 96 reactions (SKU 318009)

Bases for Sample Index Index Sequence Sheet CATTAAGGCC GGCCTTAATG Barcode 52 Barcode 53 CCGCCTCAGA TCTGAGGCGG Barcode 55 GCCGGTTATC GATAACCGGC Barcode 56 GGAATATTGA TCAATATTCC Barcode 57 ATTCAACGGA TCCGTTGAAT Barcode 58 AACTGTACTG CAGTACAGTT Barcode 59 GTACCTCAAT ATTGAGGTAC Barcode 60 GACTTCTAAT ATTAGAAGTC TGAAGCGTTG CAACGCTTCA Barcode 61 Barcode 62 CGTGCGATCC GGATCGCACG Barcode 63 TCGGAAGGCA TGCCTTCCGA Barcode 64 CCGATGTCGC GCGACATCGG Barcode 65 ACTTAGAATG CATTCTAAGT Barcode 66 TCCAAGCCTG CAGGCTTGGA AGACGATGAT ATCATCGTCT Barcode 67 GTCTTGTGAG Barcode 68 CTCACAAGAC

CleanPlex for MGI Single-Indexed PCR Primers Set D

16 indexes, 32 reactions (SKU 318004) 16 indexes, 96 reactions (SKU 318010)

Index	Bases for Sample Sheet	Index Sequence
Barcode 69	CGTTCCTACT	AGTAGGAACG
Barcode 70	GTGGTTGTGA	TCACAACCAC
Barcode 71	GAAGGCCTGC	GCAGGCCTTC
Barcode 72	TAGCTTGCCA	TGGCAAGCTA
Barcode 73	GACAATGCTC	GAGCATTGTC
Barcode 74	GCTAATCACA	TGTGATTAGC
Barcode 75	AGTCCATAGG	CCTATGGACT
Barcode 76	CTATCGCCTA	TAGGCGATAG
Barcode 77	ATCGTGGTCT	AGACCACGAT
Barcode 78	TGGCTAATAC	GTATTAGCCA
Barcode 79	CAGTGCAGAG	CTCTGCACTG
Barcode 80	TCAGGCTGGT	ACCAGCCTGA
Barcode 81	ATACTCACGC	GCGTGAGTAT
Barcode 82	ATGCTCCGCG	CGCGGAGCAT
Barcode 83	TGTGAACTTG	CAAGTTCACA
Barcode 84	GAGAGGTGCT	AGCACCTCTC

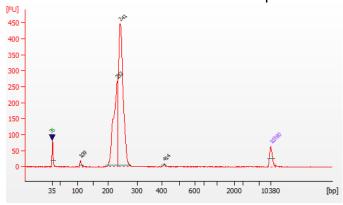
CleanPlex for MGI Single-Indexed PCR Primers Set E

16 indexes, 32 reactions (SKU 318005) 16 indexes, 96 reactions (SKU 318011)

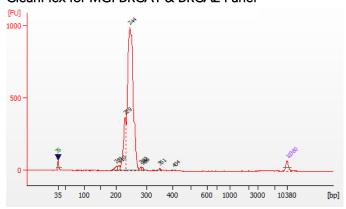
Bases for Sample Index Index Sequence Sheet TGCACTGTAA TTACAGTGCA Barcode 85 Barcode 86 GCCTAGGCAA TTGCCTAGGC Barcode 87 CCATCATAGC GCTATGATGG Barcode 88 CATGGTAATT AATTACCATG Barcode 89 CACCATGTCT AGACATGGTG Barcode 90 ATATGTCTGG CCAGACATAT Barcode 91 AAGGAAGCGT ACGCTTCCTT Barcode 92 TCAAGACGTC GACGTCTTGA CCGCTCAGTA TACTGAGCGG Barcode 93 Barcode 94 GGTGTGTACA TGTACACACC Barcode 95 TTCACGTAAG CTTACGTGAA Barcode 96 GGTTCCACAC GTGTGGAACC Barcode 97 AGGTATTCTT AAGAATACCT Barcode 98 CGAATGCAAC GTTGCATTCG TTCAACGGCG CGCCGTTGAA Barcode 99 Barcode 100 CTCGGCGGAA TTCCGCCGAG

CleanPlex for MGI Single-Indexed PCR Primers Set F

16 indexes, 32 reactions (SKU 318006) 16 indexes, 96 reactions (SKU 318012)


Index	Bases for Sample Sheet	Index Sequence		
Barcode 101	ACGGTAATGG	CCATTACCGT		
Barcode 102	GATCCGACGT	ACGTCGGATC		
Barcode 103	TCACGATACA	TGTATCGTGA		
Barcode 104	GATTCTCTTC	GAAGAGAATC		
Barcode 114	CCAGAGTCAG	CTGACTCTGG		
Barcode 115	AACAGGCAGT	ACTGCCTGTT		
Barcode 116	GCTCCATGAC	GTCATGGAGC		
Barcode 117	ATGTCTATCC	GGATAGACAT		
Barcode 121	CCTTGATCAA	TTGATCAAGG		
Barcode 122	GGAAGTGGCA	TGCCACTTCC		
Barcode 123	AACATTCTAC	GTAGAATGTT		
Barcode 124	GACGCGAGTC	GACTCGCGTC		
Barcode 125	CTATAACACT	AGTGTTATAG		
Barcode 126	AGTCTCGTGT	ACACGAGACT		
Barcode 127	TCGGCCTATG	CATAGGCCGA		
Barcode 128	TTGCAGACGG	CCGTCTGCAA		

Troubleshooting Guide


Examples of Libraries Prepared with CleanPlex for MGI NGS Panels

Depending on the CleanPlex for MGI NGS Panel used, library peak(s) should be between 200 and 400 bp. Below are representative Agilent Bioanalyzer traces generated for various CleanPlex for MGI Ready-to-Use Panels using 10 ng of gDNA as input.

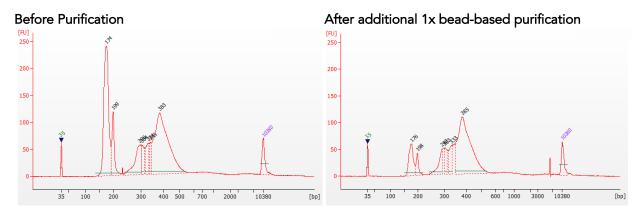
CleanPlex for MGI OncoZoom Cancer HotSpot Panel

CleanPlex for MGI BRCA1 & BRCA2 Panel

Potential Causes for Extra Peaks and Suggested Solutions

Peaks around 70–90 bp are index primer dimers from the Second PCR Reaction and result from incomplete removal of low molecular weight DNA fragments during the final magnetic bead purification (Post-Second PCR Purification). When these peaks are high, it usually indicates one or more of the following:

- Inaccurate pipetting of magnetic beads when making a large number of libraries in a short period of
- Insufficient removal of supernatant and/or ethanol washes during the last purification.
- Adding more than specified amount of indexed primers to Second PCR Reaction Primer.


Peaks around 150–190 bp are residues of digested non-specific amplification products and adapter dimers. They come from incomplete removal of low molecular weight DNA fragments during the Post-Digestion Purification or nonspecific products formed during or after the Multiplex PCR (mPCR) Reaction due to deviation from protocol or high concentration of panel. The digestion reagent degrades non-specific amplification products into small pieces, which are then removed during magnetic bead purification. These peaks are usually caused by one or more of the following:

- Inaccurate pipetting of magnetic bead volume.
- Insufficient mixing of reaction solutions or bead and sample mixture.
- Insufficient removal of supernatant and ethanol washes during purification.
- Allowing mPCR products to sit for too long (and form nonspecific products) before purification.
- CleanPlex Custom NGS Panels may require panel titration for optimal performance. Often dimers will decrease by reducing the panel concentration in the mPCR Reaction Mixture.
- Incorrect annealing time, specifically unnecessarily longer annealing time.

Broad peaks spread across 500 – 10,000 bp range are nonspecific products due to overamplification. Double check that the correct mPCR and Second PCR cycle numbers were used. PCR cycles are determined based on the amplicon count per pool of your panel, DNA input amount, and DNA quality. Try reducing the Second PCR cycles by 2-3 cycles if issue persists. If you're working with a custom panel for organisms with a much smaller genome than human's, consider reducing the DNA input and Second PCR cycles accordingly.

Removing nonspecific products from final libraries

If short nonspecific products described above are present in significant amounts, they can be reduced by pooling indexed libraries (that will be sequenced in the same lane) and performing one additional round of 1X magnetic bead-based purification if the pooled library concentrations is >3,000 pM and the total volume is >5 μ L. Low volume and low concentration libraries should not be bead purified again as it will lead to significant loss of the library of interest. In the figures below, the Agilent Bioanalyzer trace on the left shows a CleanPlex NGS library that contains significant adapter dimers due to poor library preparation. The Bioanalyzer trace on the right shows the same library after an additional 1X magnetic bead-based purification. The bead purification can be repeated once more if volume and concentration still meet the criteria above. We recommend keeping short adapter dimer peaks to less than 5% for best results. When possible it's always better to repeat the library preparation with the corrected steps so nonspecific products do not form in the first place.

UG1003-02 For Research Use Only. Not for use in diagnostic procedures.

Potential Reasons for No Peaks

- 30% ethanol instead of 70% ethanol was used in DNA purification with magnetic beads.
- Magnetic beads were not added for one or more of the purification steps.
- Stop Buffer was not added or was added too late after Digestion Reaction, resulting in overdigestion of the samples. This may happen when handling a large number of samples.
- DNA quantification was inaccurate, especially if using spectrophotometric methods, such as the NanoDrop instrument. Try using more input DNA.
- DNA quality is extremely degraded. Try using more input DNA.
- Incompatible indexed PCR primers were using in the Second PCR Reaction. Only use CleanPlex for MGI Indexed PCR Primers with CleanPlex for MGI NGS Panels.
- A weak or incompatible magnetic rack was used to perform magnetic bead purification, resulting in significant bead loss. Do **not** use magnetic racks designed for 1.5 ml tubes.

Please visit www.paragongenomics.com/product/faq/ for additional troubleshooting resources.

Data Analysis Recommendations for MGISEQ

For help with sequencing data analysis, please contact technical support.

Technical Support

For technical assistance, please contact Paragon Genomics Technical Support.

Phone: 650-822-7545

Email: techsupport@paragongenomics.com
Website: www.paragongenomics.com

Paragon Genomics, Inc. 3521 Investment Blvd, Ste 1 Hayward, CA 94545, USA 1-510-363-9918 contact@paragongenomics.com www.paragongenomics.com

© 2019 Paragon Genomics, Inc. All rights reserved.