

pYES2/CT, pYES3/CT, and pYC2/CT

Yeast expression vectors with C-terminal tags and auxotrophic selection markers

Catalog no. V8251-20, V8253-20, and V8255-20

Rev. date: 30 November 2009 Manual part no. 25-0304 MAN0000128

User Manual

Table of Contents

Kit Contents and Storage	iv
Introduction	1
Product Overview	1
Methods	3
Cloning into pYES2/CT, pYES3/CT, or pYC2/CT	3
Yeast Transformation	7
Expression of Recombinant Protein	9
Appendix	13
pYES2/CT Vector	
pYES2/CT/lacZ	
pYES3/CT Vector	16
pYES3/CT/lacZ	
pYC2/CT Vector	
pYC2/CT/lacZ	21
Recipes	
Small-Scale Yeast Transformation	25
Preparing Denatured Salmon Sperm DNA	
Accessory Products	
Technical Support	
Purchaser Notification	
References	

Kit Contents and Storage

Shipping and
StoragepYES2/CT, pYES3 and pYC2 vectors are shipped on wet ice. Upon receipt, store
vectors at -20°C.

Kit Contents All vectors are supplied as detailed below. **Store the vectors at –20°C.**

Cat. no.	Vector	Composition	Amount
V8251-20	pYES2/CT 40 μL of 0.5 μg/μL vector in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0		20 µg
V 8231-20	pYES2/CT/lacZ	40 μL of 0.5 μg/μL vector in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0	20 µg
V8253-20 pYES3/CT pYES3/CT/lacZ		pYES3/CT 40 μL of 0.5 μg/μL vector in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0	
		40 μL of 0.5 μg/μL vector in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0	20 µg
pYC2/CT		40 μL of 0.5 μg/μL vector in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0	20 µg
V8255-20	pYC2/CT/lacZ	40 μL of 0.5 μg/μL vector in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0	20 µg

Note	The INVSc1 Yeast Strain is included with each vector kit. Note : For long-term storage of your stab, we recommend preparing a glycerol stock immediately upon receipt and storing at –80°C.		
Genotype/ Phenotype of INVSc1	The genotype and phenotype of the INVSc1 host strain are provided below. Genotype: MAT a <i>his</i> 3Δ1 <i>leu</i> 2 <i>trp</i> 1-289 <i>ura</i> 3-52/MATα <i>his</i> 3Δ1 <i>leu</i> 2 <i>trp</i> 1-289 <i>ura</i> 3-52 Phenotype: His ⁻ , Leu ⁻ , Trp ⁻ , Ura ⁻		
Preparing INVSc1 Glycerol Stocks	We recommend that you prepare a set of glycerol master stocks within two weeks of receiving the INVSc1 yeast cells. 1. Use a sterile loop to inoculate a 50 mL tube containing 5 mL YPD medium with		
	the INVSc1 yeast stab.		
	2. Incubate the cells at 30°C with shaking overnight or until the culture is turbid.		
	3. Add 1 mL sterile 80% glycerol and mix thoroughly.		
	4. Dispense the stock into cryovials and freeze at –80°C.		
	5. Revive the yeast by transferring a small portion of the frozen sample onto an YPD agar plate.		
Intended Use	For research use only. Not intended for any animal or human therapeutic or diagnostic use.		

Introduction

Product Overview

Description of the System	 respectively, design Saccharomyces cerevia expressed proteins (the following eleme Yeast GAL1 pro galactose and re page 9 for more 	ed for inducible expressiae. Features of the vec siae. Features of the vec (see pages 13–20 for mo nts: moter for high level in epression by glucose (C information)	6.0 kb, 5.9 kb, and 4.6 kb ssion of recombinant pro ctors allow purification a ore information). The vec ducible protein expressio Giniger <i>et al.</i> , 1985; West <i>e</i>	teins in nd detection of ctors contain on in yeast by <i>et al.,</i> 1984) (see
	• Multiple cloning site (MCS) with 8 or 9 unique sites (plus two <i>BstX</i> I sites) to facilitate in-frame cloning with the C-terminal peptide (see page 7 for more information)			
	• C-terminal peptide encoding the V5 epitope and a polyhistidine (6xHis) tag for detection and purification of your recombinant fusion protein			
	and pYES3/CT		nd high copy replication (uence for non-integrative (pYC2/CT)	
	• URA3 or TRP1 a below)	auxotrophic marker for	r selection of yeast transf	ormants (see
	Ampicillin resis	tance gene for selection	n in <i>E. coli</i>	
	The table below sum	nmarizes the specific el	lements found in each ve	ector.
	Vector	MCS	Auxotrophic Marker	Origin
	pYES2/CT	9 unique sites plus two <i>BstX</i> I sites	URA3	2μ
	pYES3/CT	8 unique sites plus two <i>BstX</i> I sites	TRP1	2μ
	pYC2/CT	9 unique sites plus two <i>Bst</i> X I sites	URA3	CEN6/ARSH4

Product Overview, Continued

Experimental Outline

The table below outlines the major steps required to clone and express your gene of interest in pYES2/CT, pYES3/CT, or pYC2/CT.

Step	Action
1	Consult the multiple cloning site described on page 7 to determine a strategy to clone your gene in frame with the C-terminal peptide.
2	Ligate your insert into the appropriate vector and transform into <i>E. coli</i> . Select transformants on LB plates containing 50 to 100 μ g/mL ampicillin.
3	Analyze your transformants for the presence of insert by restriction digestion.
4	Select a transformant with the correct restriction pattern and sequence to confirm that your gene is cloned in frame with the C-terminal peptide.
5	Transform your construct into competent INVSc1 cells and select for the appropriate amino acid prototrophy.
6	Test for expression of your recombinant protein by western blot analysis or functional assay.
7	Use metal-chelating resin such as ProBond [™] to purify your recombinant protein.

Methods

Cloning into pYES2/CT, pYES3/CT, or pYC2/CT

General Molecular Biology Techniques	For help with DNA ligations, <i>E. coli</i> transformations, restriction enzyme analysis, DNA sequencing, and DNA biochemistry, refer to <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989) or <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).	
<i>E. coli</i> Strain	Many <i>E. coli</i> strains are suitable for the propagation of pYES2/CT, pYES3/CT, and pYC2/CT. We recommend that you propagate the vectors in <i>E. coli</i> strains that are recombination deficient (<i>rec</i> A) and endonuclease deficient (<i>end</i> A).	
	For your convenience, TOP10 <i>E. coli</i> are available as chemically competent or electrocompetent cells from Invitrogen (page 27).	
Transformation Method	You may use any method of your choice for transformation. Chemical transformation is the most convenient for most researchers. Electroporation is the most efficient and the method of choice for large plasmids.	
Propagating and Maintaining Plasmids	To propagate and maintain the pYES2/CT, pYES3/CT, and pYC2/CT vectors, use a small amount of the supplied $0.5 \ \mu g/\mu L$ stock solution in TE, pH 8.0 to transform a <i>recA</i> , <i>endA E</i> . <i>coli</i> strain like TOP10F', DH5 α , JM109, or equivalent. Select transformants on LB plates containing 50–100 $\mu g/mL$ ampicillin. Be sure to prepare a glycerol stock of each plasmid for long term storage (see page 6).	
2µ Origin	The pYES2/CT and pYES3/CT vectors contain the 2μ origin for maintenance and replication in yeast. The sequence containing the 2μ origin was originally isolated from the naturally-occurring yeast 2μ plasmid (Hartley and Donelson, 1980). When placed in a heterologous expression plasmid (i.e. pYES2/CT or pYES3/CT), the presence of the 2μ origin allows the plasmid to be episomally maintained and replicated at high copy number (generally 10–40 copies per cell).	

Cloning into pYES2/CT, pYES3/CT, or pYC2/CT, Continued

CEN6/ARSH4 Sequence	The pYC2/CT vector contains the CEN6/ARSH4 sequence (Sikorski and Hieter, 1989) for maintenance and replication in yeast. The CEN6/ARSH4 sequence is a 518 bp hybrid DNA fragment that contains a yeast centromere sequence (CEN) and an autonomously replicating sequence (ARS) (Sikorski and Hieter, 1989). The CEN6 sequence is derived from the CEN6 locus of yeast chromosome 6 (Panzeri and Philippsen, 1982) while the ARSH4 sequence is derived from the yeast histone H4-associated ARS (Bouton and Smith, 1986). When placed in a heterologous expression plasmid (i.e. pYC2/CT), the presence of the CEN6/ARSH4 sequence allows non-integrative centromeric maintenance and low copy number replication of the plasmid (generally 1–2 copies per cell).
Cloning Considerations	pYES and pYC vectors do not contain an ATG initiation codon for proper initiation of translation. Be sure to design your insert to contain an ATG initiation sequence. In addition to the initiation codon, you may also include the yeast consensus sequence at the translation initiation site. An example of the yeast consensus sequence is provided below, where the ATG translation initiation codon is shown underlined.
	(A/Y)A(A/C)A(A/C)AATGTC(T/C)
	Note that other sequences are also possible. The prevalence of the TCT as the second codon is thought to contribute to stabilization under the N-end rule (Hamilton <i>et al.</i> , 1987). Although not as strong as the mammalian Kozak translation initiation sequence, the yeast consensus sequence is thought to have a 2–3-fold effect on the efficiency of translation initiation.
	To express your gene as a recombinant fusion protein, you must clone your gene in frame with the C-terminal peptide containing the V5 epitope and the polyhistidine (6xHis) tag. See the diagram on the next page to develop a cloning strategy. Note that pYES2/CT, pYES3/CT, and pYC2/CT possess the same multiple cloning site.
	If you wish to express your protein WITHOUT the C-terminal peptide, be sure to include a stop codon.

Cloning into pYES2/CT, pYES3/CT, or pYC2/CT, Continued

Multiple Cloning Below is a diagram of the multiple cloning site for pYES2/CT, pYES3/CT, and pYC2/CT. Features of the GAL1 promoter are marked as previously described Site of pYES2/CT, (Giniger et al., 1985; Johnston and Davis, 1984; Yocum et al., 1984). Restriction pYES3/CT, and sites are labeled to indicate the cleavage site. The multiple cloning site has been pYC2/CT confirmed by sequencing and functional testing. The vector sequences of pYES2/CT, pYES3/CT, and pYC2/CT are available for downloading from www.invitrogen.com or from Technical Support (see page 29). For maps and a description of the features of pYES2/CT, pYES3/CT, and pYC2/CT, refer to pages 13-20. GAL1 promoter TATA box 300 TTAACAGATA TATAAATGCA AAAACTGCAT AACCACTTTA ACTAATACTT TCAACATTTT start of transcription 360 CGGTTTGTAT TACTTCTTAT TCAAATGTAA TAAAAGTATC AACAAAAAAT TGTTAATATA 3' end of GAL1 promoter GAL1 forward priming site 420 CCTCTATACT TTAACGTCAA GGAGAAAAAA CCCCGGATCG GACTACTAGC AGCTGTAATA Hind III Asp718 | Kpn | Sac | BamH I T7 promoter/priming site CGACTCACTA TAGGGAATAT TAAGCTTGGT ACCGAGCTCG GATCCACTAG TAACGGCCGC 480 BstX I* EcoR I BstX I* Not I Xho I Xba I[†] CAGTGTGCTG GAATTCTGCA GATATCCAGC ACAGTGGCGG CCGCTCGAGT CTAGAGGGCC 540 V5 epitope CTTCGAA GGT AAG CCT ATC CCT AAC CCT CTC CTC GGT CTC GAT TCT ACG 600 Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr Polyhistidine region Pme I 649 CGT ACC GGT CAT CAT CAC CAT CAC CAT TGA GTTTAAACCC GCTGATCCTA Arg Thr Gly His His His His His *** CYC1 reverse priming site GAGGGCCGCA TCATGTAATT AGTTATGTCA CGCTTACATT CACGCCCTCC CCCCACATCC 699 *Please note that there are two BstX I sites in the polylinker. [†]The Xba I site is not unique in pYES3/CT.

Cloning into pYES2/CT, pYES3/CT, or pYC2/CT, Continued

<i>E. coli</i> Transformation	Transform your ligation mixtures into a competent <i>recA</i> , <i>endA E</i> . <i>coli</i> strain of your choice. Select for transformants on LB plates containing 50 to 100 µg/mL ampicillin. Select 10–20 clones and analyze by restriction digest or sequencing for the presence and orientation of your insert.		
	We recommend that you sequence your construct to confirm that your gene is fused in frame with the C-terminal V5 epitope and the polyhistidine (6xHis) tag. To sequence your construct we suggest using either the <i>GAL1</i> Forward or the T7 Promoter primer sequences along with the <i>CYC1</i> Reverse primer sequences. Refer to the diagram on the previous page for the sequences and location of the priming sites.		
Preparing a Glycerol Stock	Once you have identified the correct clone, be sure to purify the colony and make a glycerol stock for long-term storage. It is also a good idea to keep a DNA stock of your plasmid at –20°C.		
	 Streak the original colony out on an LB plate containing 50 μg/mL ampicillin. Incubate the plate at 37°C overnight. 		
	 Isolate a single colony and inoculate into 1–2 mL of LB containing 50 μg/mL ampicillin. 		
	3. Grow the culture to mid-log phase ($OD_{600} = 0.5 - 0.7$).		
	4. Mix 0.85 mL of culture with 0.15 mL of sterile glycerol and transfer to a cryovial.		
	5. Store at -80° C.		
Plasmid Preparation	You may use any method of your choice to prepare purified plasmid DNA for small-scale yeast transformation. Standard protocols can be found in <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994) or <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989).		
	If you need ultrapure DNA for sequencing, we recommend isolating plasmid DNA using the PureLink [™] HiPure Plasmid Miniprep Kit or the PureLink [™] HiPure Plasmid Midiprep Kit (see page 27).		

Yeast Transformation

Introduction	In this section, you will use a small-scale yeast transformation protocol to transform your pYES2/CT, pYES3/CT, or pYC2/CT construct into the INVSc1 yeast host strain included with each vector. After transformation, expression of your recombinant fusion protein from pYES2/CT, pYES3/CT, or pYC2/CT can be induced using galactose.		
Basic Yeast Molecular Biology	To familiarize yourself with basic yeast molecular biology and microbiological techniques, refer to <i>Current Protocols in Molecular Biology</i> , Unit 13 (Ausubel <i>et al.,</i> 1994) and the <i>Guide to Yeast Genetics and Molecular Biology</i> (Guthrie and Fink, 1991) for information on preparing yeast media and handling yeast.		
Genotype/	The genotype and phenotype of the INVSc1 host strain are provided below.		
Phenotype of INVSc1	Genotype: <i>his3∆</i> 1/ <i>his3∆</i> 1 <i>leu2/leu2 trp</i> 1-289/ <i>trp</i> 1-289 <i>ura</i> 3-52/ <i>ura</i> 3-52		
1117201	Phenotype: His ⁻ , Leu ⁻ , Trp ⁻ , Ura ⁻		
	Note that INVSc1 is a diploid strain that is auxotrophic for histidine, leucine, tryptophan, and uracil. The strain will not grow in SC minimal medium that is deficient in histidine, leucine, tryptophan, or uracil. A recipe for preparation of SC minimal medium is provided in the Appendix , page 22.		
	Important: The INVSc1 strain is a suitable strain to use for expression purposes, but should not be used for genetic analyses because it does not sporulate well.		
Initiating INVSc1 Culture	To initiate a culture of INVSc1 from the stab provided with the kit, streak a small amount from the stab on a YPD plate (see Appendix for recipe, page 23) and incubate at 30°C. Once growth is established, you may check the phenotype of the strain by streaking a single colony on an SC minimal plate supplemented with the appropriate amino acids. INVSc1 will not grow in SC minimal medium that is deficient in histidine, leucine, tryptophan, or uracil.		
	Be sure to make glycerol stocks of the strain. Store glycerol stocks at -80° C. If you plan to use the strain directly from plates, be sure that the plates are less than 4 days old.		
Positive Control	The pYES2/CT, pYES3/CT, and pYC2/CT vectors are supplied with a corresponding positive control vector (pYES2/CT/ <i>lacZ</i> , pYES3/CT/ <i>lacZ</i> , and pYC2/CT/ <i>lacZ</i> , respectively) to help you optimize expression conditions for your protein. The gene encoding β -galactosidase is expressed in yeast cells under the control of the <i>GAL1</i> promoter. Successful transformation and galactose induction will result in β -galactosidase expression that can be easily assayed (see next page).		

Yeast Transformation, Continued

Assay for β-galactosidase Activity	You may assay for β -galactosidase expression by activity assay using cell-free lysates (Miller, 1972). Invitrogen offers the β -Gal Assay Kit for fast and easy detection of β -galactosidase expression (see page 27 for ordering).		
Reagents for Yeast Transformation	Many protocols are suitable for the preparation of competent INVSc1 yeast cells. The <i>S.c.</i> EasyComp [™] Kit provides a quick and easy method for preparing competent yeast cells that can be used immediately or stored frozen for future use (see page 27 for ordering). Transformation efficiency is guaranteed at >10 ³ transformants per µg DNA.		
	page 25) for your other small-scale	convenience. Alterna	tocol is included in the Appendix (see tively, there are published references for ods (Gietz <i>et al.</i> , 1992; Gietz <i>et al.</i> , 1995; Hill
Yeast Transformation	Use one of the methods described above (or one of your own choosing) to transform your pYES2/CT, pYES3/CT, or pYC2/CT plasmid construct into competent INVSc1. We recommend that you include the appropriate control vector (see the previous page) as a positive control for expression and a sample with no DNA as a negative control for transformation. Select for transformants on SC minimal media lacking the appropriate amino acids as described below. Transformants should exhibit the appropriate amino acid prototrophy (see table below). See the Appendix , page 22 for a recipe to prepare SC minimal media.		
	Vector	Selection Medium	Expected Growth Phenotype
	pYES2/CT	SC-U	Ura ⁺
	pYES3/CT	SC-W	Trp ⁺
	pYC2/CT	SC-U	Ura ⁺
		dentified a transformation long-term storage.	nt, be sure to purify the colony and make
Maintaining Transformants	construct in the a	ppropriate selective n ffinose (see the next pa	YES2/CT, pYES3/CT, or pYC2/CT nedium (SC-U or SC-W) containing 2% age). See the Appendix , page 22 for a
			varies with the carbon source. Yeast vth in medium containing glucose.

Expression of Recombinant Protein

GAL1 Promoter In typical S. cerevisiae laboratory strains (i.e., INVSc1), transcription from the GAL1 promoter is repressed in the presence of glucose (West et al., 1984). Transcription may be induced by removing glucose and adding galactose as a carbon source (Giniger et al., 1985). Maintaining cells in glucose gives the most complete repression and the lowest basal transcription of the GAL1 promoter. Transferring cells from glucose- to galactose-containing medium causes the GAL1 promoter to become de-repressed and allows transcription to be induced. Alternatively, cells may be maintained in medium containing raffinose as a carbon source. The presence of raffinose does not repress or induce transcription from the GAL1 promoter. Addition of galactose to the medium induces transcription from the GAL1 promoter even in the presence of raffinose. Induction of the GAL1 promoter by galactose is more rapid in cells maintained in raffinose when compared to those maintained in glucose. You may choose to grow cells containing your pYES2/CT, pYES3/CT, or pYC2/CT construct in glucose or raffinose depending on how quickly you want to obtain your expressed protein after induction with galactose and on the toxicity of the expressed protein. For more information about expression in yeast, refer to the Guide to Yeast Genetics and Molecular Biology (Guthrie and Fink, 1991). For a protocol to induce expression of your fusion protein with galactose, proceed to Time Course of Protein Induction by Galactose on the next page.

Expression of Recombinant Protein, Continued

Time Course of Protein Induction by Galactose

To induce expression of your protein of interest from the *GAL1* promoter, galactose is added to the medium. For cells that have been maintained in glucose, recombinant fusion protein can be detected in as little as 4 hours after galactose induction. Recombinant fusion protein can be detected in cells that have been cultured in raffinose by 2 hours after galactose induction.

If you are assaying for expression of your recombinant fusion protein for the first time, we recommend that you perform a time course to optimize expression of your recombinant protein (e.g., 0, 4, 8, 12, 16, 24 hours after galactose induction). A standard protocol is provided below to perform a time course experiment. Other protocols are suitable.

- 1. Inoculate a single colony of INVSc1 containing your pYES2/CT, pYES3/CT, or pYC2/CT construct into 15 mL of the appropriate SC selective medium containing 2% glucose or 2% raffinose. Grow overnight at 30°C with shaking.
- 2. Determine the OD₆₀₀ of your overnight culture. Calculate the amount of overnight culture necessary to obtain an OD₆₀₀ of 0.4 in 50 mL of *induction medium* (SC selective medium containing 2% galactose).

Example: Assume that the OD₆₀₀ of an overnight culture is 3 OD_{600} per mL. Then, the amount of overnight culture needed to inoculate a 50 mL culture to OD₆₀₀ = 0.4 is

<u>(0.4 OD/mL) (50 mL)</u> = 6.67 mL 3 OD/mL

- 3. Remove the amount of overnight culture as determined in Step 2 and pellet the cells at $1,500 \times g$ for 5 minutes at room temperature. Discard the supernatant.
- 4. Resuspend the cells in 50 mL of *induction medium*. See page 22 for a recipe for *induction medium*. Grow at 30°C with shaking.
- 5. Harvest an aliquot of cells at 0, 4, 8, 12, 16, and 24 hours after addition of cells to the *induction medium*. For each time point, remove 5 mL of culture from the flask and determine the OD₆₀₀ of each sample. You will use this information when assaying for your recombinant fusion protein (see Step 3 on the next page).
- 6. Centrifuge the cells at $1,500 \times g$ for 5 minutes at 4°C.
- 7. Decant the supernatant. Resuspend cells in 500 μ L of sterile water.
- 8. Transfer cells to a sterile microcentrifuge tube. Centrifuge samples for 30 seconds at top speed in the microcentrifuge.
- 9. Remove the supernatant.
- 10. Store the cell pellets at -80°C until ready to use. Proceed to the next section to prepare cell lysates to detect your recombinant protein (see the next page).

Expression of Recombinant Protein, Continued

Detecting To detect expression of your recombinant fusion protein by western blot (see below), you may use the Anti-V5 antibodies or the Anti-His(C-term) antibodies Recombinant **Fusion Protein** available from Invitrogen (see page 27 for ordering information) or an antibody to your protein of interest. You will also need to prepare a cell lysate from your yeast transformant. A general protocol for small-scale preparation of cell lysates using acid-washed glass beads is provided below for your convenience. Other protocols are suitable. Refer to Current Protocols in Molecular Biology (Ausubel et al., 1994) for more information. For large-scale preparations (culture volumes over 1 liter), see Scale**up** on the next page. **Materials Needed:** Breaking buffer 50 mM sodium phosphate, pH 7.4 (see page 23 for recipe of stock buffer) 1 mM EDTA (omit EDTA if using this buffer for purification on metalchelating resins) 5% glycerol 1 mM PMSF Acid-washed glass beads (0.4-0.6 mm size; Sigma-Aldrich, Catalog no. G8772) **Protocol:** 1. You may prepare cell lysates from frozen cells or fresh cells. **Reminder:** You will need to know the OD₆₀₀ of your cell sample(s) before beginning (see Step 5, previous page). 2. Resuspend fresh or frozen cell pellets in 500 µL of breaking buffer. Centrifuge at $1,500 \times g$ for 5 minutes at 4°C to pellet cells. 3. Remove supernatant and resuspend the cells in a volume of breaking buffer to obtain an OD_{600} of 50–100. Use the OD_{600} determined in Step 5, previous page, to calculate the appropriate volume of breaking buffer to use. 4. Add an equal volume of acid-washed glass beads. 5. Vortex mixture for 30 seconds, followed by 30 seconds on ice. Repeat four times for a total of four minutes to lyse the cells. Cells will be lysed by shear force. You can check for the extent of lysis by checking a small aliquot under the microscope. 6. Centrifuge in a microcentrifuge for 10 minutes at maximum speed. 7. Remove supernatant and transfer to a fresh microcentrifuge tube. Assay the lysate for protein concentration using BSA as a standard. 8. Add SDS-PAGE sample buffer to a final concentration of 1X and boil the sample for 5 minutes.

9. Load 20 µg of lysate onto an SDS-PAGE gel and electrophorese. Use the appropriate percentage of acrylamide to resolve your recombinant protein.

Expression of Recombinant Protein, Continued

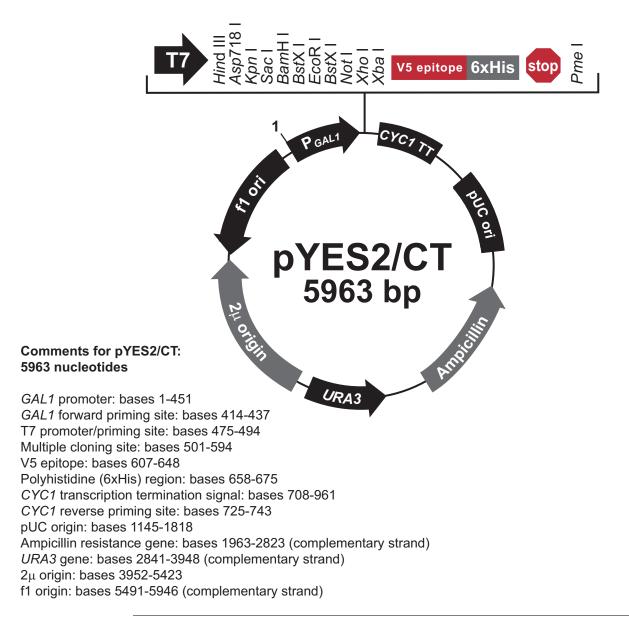
The C-terminal peptide containing the V5 epitope and the polyhistidine (6xHis) tag will add approximately 5 kDa to the size of your protein.

Scale-up of Expression for Purification Once you have determined the optimal induction time necessary to obtain maximal protein expression, you may increase the protein yield by scaling up the procedure described on page 10. If you plan to use ProBondTM resin to purify your recombinant fusion protein, see the **Note** below. To prepare cell lysates from culture volumes over 1 liter, we recommend that you use a bead beater (Biospec Products, Bartlesville, OK) to lyse the cells. Refer to *Current Protocols in Molecular Biology* (Ausubel *et al.*, 1994) for a suitable protocol to lyse cells with a bead beater.

If you are using breaking buffer (see previous page) for purification of your recombinant protein on ProBond[™], do not include EDTA in this buffer, as it will interfere with the binding of proteins on ProBond[™].

Purification

For help with purification of your recombinant fusion protein, refer to the ProBond[™] Purification System manual.


If you are using another type of resin, refer to the manufacturer's recommendations.

Appendix

pYES2/CT Vector

Map of pYES2/CT

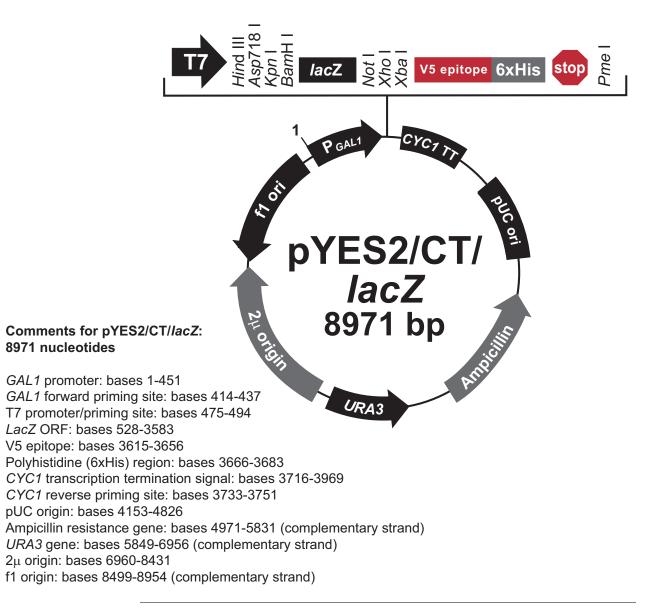
The figure below summarizes the features of the pYES2/CT vector. The vector sequence for pYES2/CT is available for downloading from www.invitrogen.com or from **Technical Support** (see page 29).

pYES2/CT Vector, Continued

Features of pYES2/CT

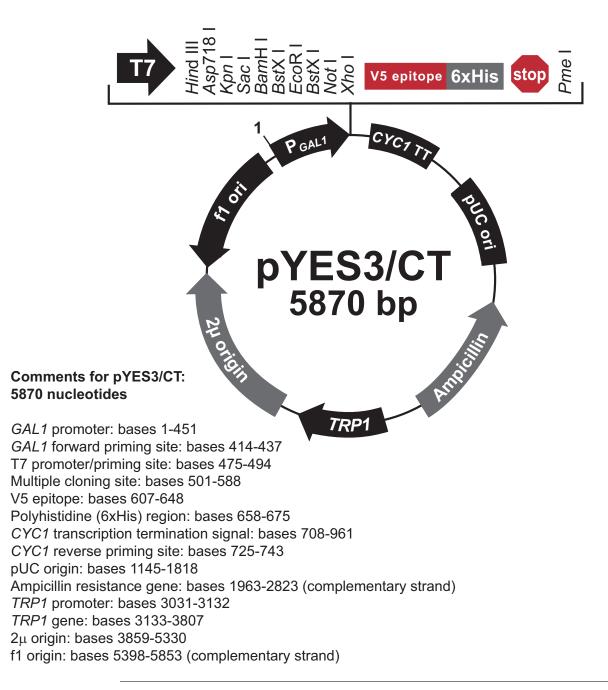
pYES2/CT (5963 bp) contains the following elements. All features have been functionally tested.

Feature	Benefit
GAL1 promoter	Permits galactose-inducible expression of genes cloned into pYES2/CT (West <i>et al.</i> , 1984).
GAL1 forward priming site	Allows sequencing through the insert.
T7 promoter/priming site	Allows for <i>in vitro</i> transcription in the sense orientation and sequencing through the insert.
Multiple cloning site with 9 unique sites and two <i>BstX</i> I sites	Allows insertion of your gene and facilitates cloning in frame with the V5 epitope and the polyhistidine tag.
V5 epitope	Permits detection of the fusion protein with the Anti-V5 Antibody or the Anti-V5-HRP Antibody (Southern <i>et al.</i> , 1991).
C-terminal polyhistidine (6xHis) tag	Permits purification of your fusion protein on metal-chelating resin such as ProBond [™]
	In addition, the C-terminal polyhistidine tag is the epitope for the Anti-His(C-term) Antibody and the Anti-His(C-term)-HRP Antibody (Lindner <i>et al.</i> , 1997).
CYC1 transcription termination signal	Permits efficient termination and stabilization of mRNA.
CYC1 reverse priming site	Allows sequencing through the insert.
pUC origin	Allows maintenance and high copy replication in <i>E. coli</i> .
Ampicillin resistance gene	Allows selection of transformants in <i>E. coli</i> .
URA3 gene	Permits selection of yeast transformants in uracil- deficient medium.
2μ origin	Permits episomal maintenance and high copy replication in yeast.
f1 origin	Allows rescue of single-stranded DNA.


pYES2/CT/lacZ

pYES2/CT/*lacZ* is a 8971 bp control vector containing the gene for β -galactosidase. This vector was constructed by ligating a 3.1 kb fragment containing the *lacZ* gene into the *Bam*H I-*Not* I site of pYES2/CT. Note that β -galactosidase will be expressed as a fusion protein containing the C-terminal V5 epitope and a polyhistidine (6xHis) tag.

Map of pYES2/CT/*lacZ*


Description

The figure below summarizes the features of the pYES2/CT/*lacZ* vector. The vector nucleotide sequence for pYES2/CT/*lacZ* is available for downloading from www.invitrogen.com or by contacting **Technical Support** (see page 29)

pYES3/CT Vector

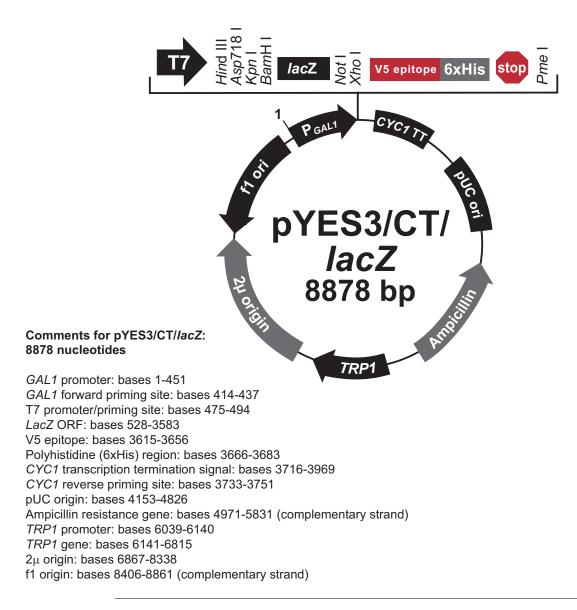
Map of pYES3/CT The figure below summarizes the features of the pYES3/CT/*lacZ* vector. The vector sequence for pYES3/CT/*lacZ* is available for downloading from www.invitrogen.com or from **Technical Support** (see page 29).

pYES3/CT Vector, Continued

Features of pYES3/CT

pYES3/CT (5870 bp) contains the following elements. All features have been functionally tested.

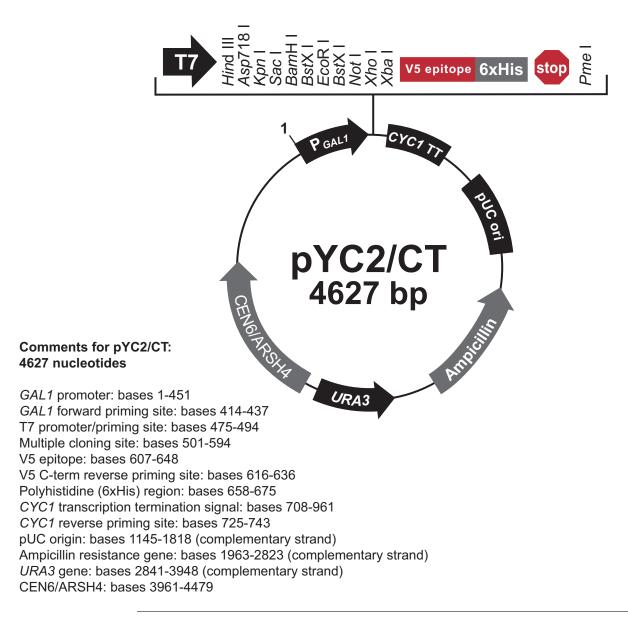
Feature	Benefit
GAL1 promoter	Permits galactose-inducible expression of genes cloned into pYES3/CT (West <i>et al.</i> , 1984).
GAL1 forward priming site	Allows sequencing through the insert.
T7 promoter/priming site	Allows for <i>in vitro</i> transcription in the sense orientation and sequencing through the insert.
Multiple cloning site with 8 unique sites and two <i>BstX</i> I sites	Allows insertion of your gene and facilitates cloning in frame with the V5 epitope and the polyhistidine tag.
V5 epitope	Permits detection of the fusion protein with the Anti-V5 Antibody or the Anti-V5-HRP Antibody (Southern <i>et al.</i> , 1991).
C-terminal polyhistidine (6xHis) tag	Permits purification of your fusion protein on metal-chelating resin such as ProBond [™] . In addition, the C-terminal polyhistidine tag is the epitope for the Anti-His(C-term) Antibody and the Anti-His(C-term)-HRP Antibody (Lindner <i>et al.</i> , 1997).
CYC1 transcription termination signal	Permits efficient termination and stabilization of mRNA.
CYC1 reverse priming site	Allows sequencing through the insert.
pUC origin	Allows maintenance and high copy replication in <i>E. coli</i> .
Ampicillin resistance gene	Permits selection of transformants in <i>E. coli</i> .
TRP1 promoter	Allows expression of the TRP1 gene.
TRP1 gene	Permits selection of yeast transformants in tryptophan-deficient medium (Tschumper and Carbon, 1980).
2μ origin	Permits episomal maintenance and high copy replication in yeast.
f1 origin	Allows rescue of single-stranded DNA.


pYES3/CT/lacZ

pYES3/CT/*lacZ* is a 8878 bp control vector containing the gene for β -galactosidase. This vector was constructed by ligating a 3.1 kb fragment containing the *lacZ* gene into the *Bam*H I-*Not* I site of pYES3/CT. Note that β -galactosidase will be expressed as a fusion protein containing the C-terminal V5 epitope and a polyhistidine (6xHis) tag.

Map of pYES3/CT/*lacZ*

Description


The figure below summarizes the features of the pYES3/CT/*lacZ* vector. The vector nucleotide sequence for pYES3/CT/*lacZ* is available for downloading from www.invitrogen.com or by contacting **Technical Support** (see page 29)

pYC2/CT Vector

Map of pYC2/CT

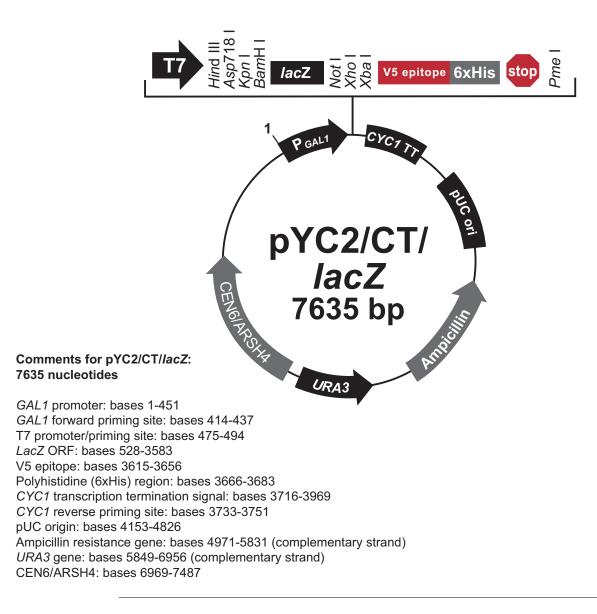
The figure below summarizes the features of the pYC2/CT vector. The vector sequence for pYC2/CT is available for downloading from www.invitrogen.com or from **Technical Support** (see page 29).

pYC2/CT Vector, Continued

Features of pYC2/CT

pYC2/CT (4627 bp) contains the following elements. All features have been functionally tested.

Feature	Benefit
GAL1 promoter	Permits galactose-inducible expression of genes cloned into pYC2/CT (West <i>et al.</i> , 1984).
GAL1 forward priming site	Allows sequencing through the insert.
T7 promoter/priming site	Allows for <i>in vitro</i> transcription in the sense orientation and sequencing through the insert.
Multiple cloning site with 9 unique sites and two <i>BstX</i> I sites	Allows insertion of your gene and facilitates cloning in frame with the V5 epitope and the polyhistidine tag.
V5 epitope	Permits detection of the fusion protein with the Anti-V5 Antibody or the Anti-V5-HRP Antibody (Southern <i>et al.</i> , 1991).
C-terminal polyhistidine (6xHis) tag	Permits purification of your fusion protein on metal-chelating resin such as ProBond [™]
	In addition, the C-terminal polyhistidine tag is the epitope for the Anti-His(C-term) Antibody and the Anti-His(C-term)-HRP Antibody (Lindner <i>et al.</i> , 1997).
CYC1 transcription termination signal	Permits efficient termination and stabilization of mRNA.
CYC1 reverse priming site	Allows sequencing through the insert.
pUC origin	Allows maintenance and high copy replication in <i>E. coli</i> .
Ampicillin resistance gene	Permits selection of transformants in <i>E. coli</i> .
URA3 gene	Permits selection of yeast transformants in uracil- deficient medium.
CEN6/ARSH4 sequence	Permits non-integrative centromeric maintenance and low copy replication in yeast (Sikorski and Hieter, 1989).


pYC2/CT/lacZ

Description

pYC2/CT/*lacZ* is a 7635 bp control vector containing the gene for β -galactosidase. This vector was constructed by ligating a 3.1 kb fragment containing the *lacZ* gene into the *Bam*H I-*Not* I site of pYC2/CT. Note that β -galactosidase will be expressed as a fusion protein containing the C-terminal V5 epitope and a polyhistidine (6xHis) tag.

Map of pYC2/CT/*lacZ*

The figure below summarizes the features of the pYC2/CT/*lacZ* vector. The vector nucleotide sequence for pYC2/CT/lacZ is available for downloading from www.invitrogen.com or from **Technical Support** (see page 29).

Recipes

SC Minimal Medium and Plates	SC is synthetic minimal defined medium for yeast. 0.67% yeast nitrogen base (without amino acids but with ammonium sulfate) 2% carbon source (i.e. glucose or raffinose) 0.01% (adenine, arginine, cysteine, leucine, lysine, threonine, tryptophan, uracil)
	0.005% (aspartic acid, histidine, isoleucine, methionine, phenylalanine, proline, serine, tyrosine, valine)
	2% agar (for plates)
	the second se

1. Dissolve the following reagents in 900 mL deionized water (800 mL if preparing medium containing raffinose). **Note:** We make medium and plates as we need them and weigh out each amino acid. Many researchers prepare 100X solutions of each amino acid that they need.

Reminder: Omit uracil to make selective plates for growing pYES2/CT or pYC2/CT transformants. Omit tryptophan to make selective plates for growing pYES3/CT transformants.

6.7 g Yeast Nitrogen Base	0.1 g each	0.05 g each
	adenine	aspartic acid
	arginine	histidine
	cysteine	isoleucine
	leucine	methionine
	lysine	phenylalanine
	threonine	proline
	tryptophan (W)	serine
	uracil (U)	tyrosine
		valine

- 2. If you are making plates, add the agar after dissolving the reagents above.
- 3. Autoclave at 15 psi, 121°C for 20 minutes.
- 4. Cool to 50°C and add 100 mL of filter-sterilized 20% glucose or 200 mL of filter-sterilized 10% raffinose.
- 5. Pour plates and allow the plates to harden. Invert the plates and store at 4°C. Plates are stable for 6 months.

Induction Medium If you are making induction medium, follow Steps 1–3 above except dissolve the reagents in 800 mL of deionized water. Cool the medium to 50°C and add 100 mL of filter-sterilized 20% galactose and 100 mL of filter-sterilized 10% raffinose to the medium.

Recipes, Continued

Important	When making stock solutions of raffinose, do not autoclave the stock solution. Autoclaving the solution will convert the raffinose to glucose. Filter-sterilize the stock solution.			
YPD	<u>Y</u> east Extract <u>P</u> eptone <u>D</u> extrose Medium (1 liter)			
	1% yeast extract 2% peptone 2% dextrose (D-glucose)			
	1. Dissolve the following in 1000 mL of water:			
	10 g yeast extract 20 g peptone 20 g dextrose (see note below if making plates)			
	2. Optional: Add 20 g agar, if making plates.			
	3. Autoclave for 20 minutes on liquid cycle.			
	4. Store medium at room temperature or cool the medium and pour plates. The shelf life is approximately one to two months.			
	Note: If making plates, omit dextrose from Step 1. Autoclaving agar and dextrose together will cause the dextrose to caramelize. Prepare a separate stock solution of 20% dextrose and autoclave or filter-sterilize. After the YPD broth (900 mL volume) has been autoclaved, add 100 mL of 20% dextrose to the medium.			
0.1 M Sodium	Materials Needed			
Phosphate, pH 7.4	Sodium phosphate, monobasic (NaH2PO4·H2O; Sigma-Aldrich S9638) Sodium phosphate, dibasic (Na2HPO4·7H2O; Sigma-Aldrich S9390)			
	 Prepare 100 mL of 1 M NaH₂PO₄·H₂O by dissolving 13.8 g in 90 mL of deionized water. Bring volume up to 100 mL. Filter-sterilize. 			
	2. Prepare 100 mL of 1 M Na ₂ HPO ₄ ·7H ₂ O by dissolving 26.81 g in 90 mL of deionized water. Bring volume up to 100 mL. Filter-sterilize.			
	3. For 1 liter of 0.1 M sodium phosphate, pH 7.4, mix together 22.6 mL of 1 M NaH_2PO_4 and 77.4 mL of 1 M Na_2HPO_4 . Bring the volume up to 1 liter with sterile water.			
	4. Filter-sterilize and store at room temperature.			

Recipes, Continued

10X TE	100 mM Tris, pH 7.5 10 mM EDTA			
	1. For 100 mL, dissolve 1.21 g of Tris base and 0.37 g of EDTA in 90 mL of deionized water.			
	 Adjust the pH to 7.5 with concentrated HCl and bring the volume up to 100 mL. 			
	3. Filter-sterilize and store at room temperature.			
	Alternatively, you can make the solution using 1 M Tris-HCl, pH 7.5 and 0.5 M EDTA, pH 8.0.			
1X TE	10 mM Tris, pH 7.5 1 mM EDTA			
	Dilute 10X TE 10-fold with sterile water.			
10X LiAc	1 M Lithium Acetate, pH 7.5			
	1. For 100 mL, dissolve 10.2 g of lithium acetate in 90 mL of deionized water.			
	 Adjust pH to 7.5 with dilute glacial acetic acid and bring up the volume to 100 mL. 			
	3. Filter-sterilize and store at room temperature.			
1X LiAc	100 mM Lithium Acetate, pH 7.5			
	Dilute 10X LiAc solution 10-fold with sterile, deionized water.			
1X LiAc/0.5X TE	100 mM Lithium Acetate, pH 7.5 5 mM Tris-HCl, pH 7.5 0.5 mM EDTA			
	1. For 100 mL, mix together 10 mL of 10X LiAc and 5 mL of 10X TE.			
	2. Add deionized water to 100 mL.			
	3. Filter-sterilize and store at room temperature.			
1X LiAc/40% PEG- 3350/1X TE	100 mM Lithium Acetate, pH 7.5 40% PEG-3350			
	10 mM Tris-HCl, pH 7.5 1 mM EDTA			
	 Prepare solution immediately prior to use. For 100 mL, mix together 10 mL of 10X LiAc, 10 mL of 10X TE, and 40 g of PEG-3350. 			
	 Add deionized water to 100 mL and dissolve the PEG. You may have to heat the solution to fully dissolve the PEG. 			
	 Autoclave at 121°C, 15 psi for 20 minutes. Store at room temperature. 			
	· ·			

Small-Scale Yeast Transformation

Materials Needed	YPD liquid medium
	• 1X TE (see Recipe , page 24)
	• 1X LiAc/0.5X TE (see Recipe , page 24)
	• Denatured salmon sperm DNA (see recipe on the next page)
	 pYES2/CT, pYES3/CT, or pYC2/CT vector construct (or other plasmid DNA to be transformed)
	• 1X LiAc/40% PEG-3350/1X TE (See Recipe , page 24)
	• DMSO
	Selective plates
Protocol	 Inoculate 10 mL of YPD medium with a colony of INVSc1 and shake overnight at 30°C.
	 Determine the OD₆₀₀ of your overnight culture. Dilute culture to an OD₆₀₀ of 0.4 in 50 mL of YPD medium and grow an additional 2–4 hours.
	3. Pellet the cells at 1,500 × g and resuspend the pellet in 40 mL 1X TE.
	4. Pellet the cells at 1,500 × g and resuspend the pellet in 2 mL of 1X LiAc/0.5X TE.
	5. Incubate the cells at room temperature for 10 minutes.
	 For each transformation, mix together 1 μg plasmid DNA and 100 μg denatured sheared salmon sperm DNA with 100 μL of the yeast suspension from Step 5.
	7. Add 700 μL of 1X LiAc/40% PEG-3350/1X TE and mix well.
	8. Incubate solution at 30°C for 30 minutes.
	9. Add 88 μ L DMSO, mix well, and heat shock at 42°C for 7 minutes.
	10. Centrifuge in a microcentrifuge for 10 seconds and remove supernatant.
	11. Resuspend the cell pellet in 1 mL 1X TE and re-pellet.
	12. Resuspend the cell pellet in 50–100 µL 1X TE and plate on a selective plate.

cells.

Preparing Denatured Salmon Sperm DNA

Materials Needed	1X TE Sonicator 50 mL conical TE-saturated p	henol:chloroform:isoamyl alcohol (25:24:1) htrifuge etate, pH 6.0 20°C) uge bottle
Protocol		sk, dissolve 1 g salmon sperm DNA into 100 mL of TE ipet up and down with a 10 mL pipette to dissolve
	Incubate overr	night at 4°C on a rotating wheel.
	at 3/4 power.	tor with a large probe, sonicate the DNA twice for 30 seconds The resulting DNA will have an average size of 7 kb. You may of the DNA on a gel.
	Aliquot the sor per tube).	nicated DNA into four 50 mL conical centrifuge tubes (25 mL
		5 mL of TE-saturated phenol. Centrifuge at 10,000 × g for C. Transfer the DNA (upper layer) to a fresh 50 mL conical e.
	(25:24:1). Cent	5 mL of TE-saturated phenol:chloroform:isoamyl alcohol rifuge at 10,000 × g for 5 minutes at 4°C. Transfer the DNA o a fresh 50 mL conical centrifuge tube.
		5 mL of chloroform. Centrifuge at 10,000 × g for 5 minutes at he DNA (upper layer) to a 250 mL centrifuge bottle.
		M sodium acetate, pH 6.0 (1/10 volume) and 125 mL ice-cold hanol (2.5 volume) to precipitate DNA.
	Pellet the DNA	A at 12,000 × g for 15 minutes at 4°C.
	. Wash the DNA step 9.	A once with 200 mL 70% ethanol and centrifuge as described in
		NA by air or in a Speed-Vac (cover tubes with parafilm and op) for 20 minutes.
	-	to a 250 mL sterile flask. Dissolve DNA in 100 mL sterile TE
		utes to denature DNA. Immediately place on ice, aliquot in and freeze at -20° C.

Accessory Products

Introduction

The following products may be used with the pYES2/CT, pYES3 and pYC2 vectors. For details, visit www.invitrogen.com or contact **Technical Support** (see page29).

Item	Amount	Catalog no.
ProBond [™] Purification System	6 × 2 mL precharged, prepacked ProBond [™] resin columns and buffers for native and denaturing purification	K850-01
ProBond [™] Resin	50 mL	R801-01
TIODOIId Resili	150 mL	R801-15
Electrocomp [™] TOP10F′	$5 \times 80 \ \mu L$	C665-55
One Shot [®] TOP10F´ Chemically Competent <i>E. coli</i>	21 × 50 μL	C3030-03
PureLink [™] HiPure Plasmid Miniprep Kit	100 preps	K2100-03
PureLink [™] HiPure Plasmid Midiprep Kit	25 preps	K2100-04
β-Gal Assay Kit	80 mL	K1455-01
β-Gal Staining Kit	1 kit	K1465-01
S.c. EasyComp [™] Kit	1 kit	K5050-01

Antibodies

If you do not have an antibody specific to your protein, Invitrogen offers the Anti-V5, or Anti-His(C-term) antibodies to detect your recombinant fusion protein. Horseradish peroxidase (HRP)- and alkaline phosphatase (AP)-conjugated antibodies are available for convenient one-step detection.

Antibody	Epitope	Catalog no.
Anti-V5	Detects a 14 amino acid epitope	R960-25
Anti-V5-HRP	derived from the P and V proteins of the paramyxovirus, SV5 (Southern et al., 1991): GKPIPNPLLGLDST	R961-25
Anti-V5-AP		R962-25
Anti-His(C-term)	Detects the C-terminal polyhistidine tag (requires the free carboxyl group for detection) (Lindner et al., 1997):	R930-25
Anti-His(C-term)-HRP		R931-25
Anti-His(C-term)-AP	НННННН-СООН	R932-25

Accessory Products, Continued

Primers	For your convenience, Invitrogen offers a custom primer synthesis service. Visit www.invitrogen.com for more details.
Other Yeast Expression Vectors	Invitrogen has a wide variety of yeast expression (YES [™]) vectors utilizing the <i>GAL1</i> promoter. Vectors are available with the Xpress [™] (N-terminal) or V5 (C-terminal) epitope for detection, the 2µ origin or CEN6/ARSH4 sequence for high copy or low copy replication, and either dominant or auxotrophic markers for selection in yeast. All vectors contain a polyhistidine tag for purification of recombinant protein using ProBond [™] resin. For more information on the YES [™] expression vectors available, see www.invitrogen.com or call Technical Support (see page 29).

Technical Support

Web Resources

- Visit the Invitrogen website at <u>www.invitrogen.com</u> for:
- Technical resources, including manuals, vector maps and sequences, application notes, SDSs, FAQs, formulations, citations, handbooks, etc.
- Complete technical support contact information
- Access to the Invitrogen Online Catalog
- Additional product information and special offers

Contact Us

For more information or technical assistance, call, write, fax, or email. Additional international offices are listed on our website (<u>www.invitrogen.com</u>).

Corporate Headquarte 5791 Van Allen Way Carlsbad, CA 92008 US Tel: 1 760 603 7200 Tel (Toll Free): 1 800 95 Fax: 1 760 602 6500 E-mail: <u>tech_support@</u>	6A 55 6288	Japanese Headquarters: LOOP-X Bldg. 6F 3-9-15, Kaigan Minato-ku, Tokyo 108-0022 Tel: 81 3 5730 6509 Fax: 81 3 5730 6519 E-mail: jpinfo@invitrogen.com	European Headquarters: Inchinnan Business Park 3 Fountain Drive Paisley PA4 9RF, UK Tel: +44 (0) 141 814 6100 Tech Fax: +44 (0) 141 814 6117 E-mail: <u>eurotech@invitrogen.com</u>
SDS	Safety Data Sheet	s (MSDSs) are available on our website	e at <u>www.invitrogen.com/sds</u> .
Certificate of Analysis	qualification inf our website. Go	of Analysis provides detailed quali formation for each product. Certific to www.invitrogen.com/support duct lot number, which is printed	cates of Analysis are available on and search for the Certificate of
with high-quality satisfied with our about an Invitrog All Invitrogen pro- certificate of anal meet those specif <u>product.</u> No warn warranty is appli instructions. The product unless th the order. Invitrogen makes occasional typogn warranty of any I discover an error Representatives. Life Technologie incidental, indire warranty is sole a		of Life Technologies Corporation) is consistent goods and services. Our goal is to ensu- products and our service. If you shoul en product or service, contact our Tech- oducts are warranted to perform accord ysis. The Company will replace, free of factions. <u>This warranty limits the Comp</u> anty is granted for products beyond the cable unless all product components ar Company reserves the right to select the e Company agrees to a specified methor every effort to ensure the accuracy of if aphical or other error is inevitable. The cind regarding the contents of any publ- in any of our publications, please repo- s Corporation shall have no responsib- ted or consequential loss or damage with and exclusive. No other warranty is m arranty of merchantability or fitness for	ure that every customer is 100% Id have any questions or concerns inical Support Representatives. ding to specifications stated on the charge, any product that does not pany's liability to only the price of the meir listed expiration date. No re stored in accordance with the method(s) used to analyze a od in writing prior to acceptance of its publications, but realizes that the erefore the Company makes no lications or documentation. If you rt it to our Technical Support bility or liability for any special, hatsoever. The above limited ade, whether expressed or implied,

Purchaser Notification

Limited Use Label License No. 22: Vectors and Clones Encoding Histidine Hexamer	This product is licensed under U.S. Patent Nos. 5,284,933 and 5,310,663 and foreign equivalents from Hoffmann-LaRoche, Inc., Nutley, NJ and/or Hoffmann-LaRoche Ltd., Basel, Switzerland and is provided only for use in research. Information about licenses for commercial use is available from QIAGEN GmbH, Max-Volmer-Str. 4, D-40724 Hilden, Germany.
Limited Use Label License No. 141: Expression of Polypeptides in Yeast	This product is the subject of one or more of U.S. Patent Nos. 5,618,676, 5,854,018, 5,856,123, 5,919,651 and foreign equivalents. Rights to use this product are limited to academic research use only. Non-academic entities are required to obtain a separate license from Washington Research Foundation to utilize this product for any use. Washington Research Foundation, 2815 Eastlake Avenue East, Suite 300, Seattle, Washington 98102. Tel: 206-336-5600. Fax: 206-336-5615.

References

- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience).
- Bouton, A. H., and Smith, M. M. (1986). Fine-Structure Analysis of the DNA Sequence Requirements for Autonomous Replication of *Saccharomyces cerevisiae* Plasmids. Mol. Cell. Biol. *6*, 2354-2363.
- Cigan, A. M., and Donahue, T. F. (1987). Sequence and Structural Features Associated with Translational Initiator Regions in Yeast--A Review. Gene 59, 1-18.
- Gietz, D., Jean, A. S., Woods, R. A., and Schiestl, R. H. (1992). Improved Method for High-Efficiency Transformation of Intact Yeast Cells. Nuc. Acids Res. 20, 1425.
- Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995). Studies on the Transformation of Intact Yeast Cells by the LiAc/SS-DNA/PEG Procedure. Yeast *11*, 355-360.
- Giniger, E., Barnum, S. M., and Ptashne, M. (1985). Specific DNA Binding of GAL4, a Positive Regulatory Protein of Yeast. Cell 40, 767-774.
- Guthrie, C., and Fink, G. R. (1991) Guide to Yeast Genetics and Molecular Biology. In *Methods in Enzymology*, Vol. 194. (J. N. Abelson and M. I. Simon, eds.) Academic Press, San Diego, CA.
- Hartley, J. L., and Donelson, J. E. (1980). Nucleotide Sequence of the Yeast Plasmid. Nature 286, 860-865.
- Hill, J., Donald, K. A., and Griffiths, D. E. (1991). DMSO-Enhanced Whole Cell Yeast Transformation. Nuc. Acids Res. 19, 5791.
- Johnston, M., and Davis, R. W. (1984). Sequences that Regulate the Divergent *GAL1-GAL10* Promoter in *Saccharomyces cerevisiae*. Mol. Cell. Biol. *4*, 1440-1448.
- Lindner, P., Bauer, K., Krebber, A., Nieba, L., Kremmer, E., Krebber, C., Honegger, A., Klinger, B., Mocikat, R., and Pluckthun, A. (1997). Specific Detection of His-tagged Proteins With Recombinant Anti-His Tag scFv-Phosphatase or scFv-Phage Fusions. BioTechniques 22, 140-149.
- Miller, J. H. (1972). Experiments in Molecular Genetics (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory).
- Panzeri, L., and Philippsen, P. (1982). Centromeric DNA from Chromosome VI in Saccharomyces cerevisiae Strains. EMBO J. 1, 1605-1611.
- Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992). Foreign Gene Expression in Yeast: A Review. Yeast 8, 423-488.
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Plainview, New York: Cold Spring Harbor Laboratory Press).
- Schiestl, R. H., and Gietz, R. D. (1989). High Efficiency Transformation of Intact Cells Using Single Stranded Nucleic Acids as a Carrier. Curr. Genet. *16*, 339-346.
- Sikorski, R. S., and Hieter, P. (1989). A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in *Saccharomyces cerevisiae*. Genetics 122, 19-27.
- Southern, J. A., Young, D. F., Heaney, F., Baumgartner, W., and Randall, R. E. (1991). Identification of an Epitope on the P and V Proteins of Simian Virus 5 That Distinguishes Between Two Isolates with Different Biological Characteristics. J. Gen. Virol. 72, 1551-1557.
- Tschumper, G., and Carbon, J. (1980). Sequence of a Yeast DNA Fragment Containing a Chromosomal Replicator and the *TRP1* Gene. Gene *10*, 157-166.

References, Continued

West, R. W. J., Yocum, R. R., and Ptashne, M. (1984). *Saccharomyces cerevisiae GAL1-GAL10* Divergent Promoter Region: Location and Function of the Upstream Activator Sequence UAS_G. Mol. Cell. Biol. *4*, 2467-2478.

Yocum, R. R., Hanley, S., R. West, J., and Ptashne, M. (1984). Use of *lacZ* Fusions to Delimit Regulatory Elements of the Inducible Divergent *GAL1-GAL10* Promoter in *Saccharomyces cerevisiae*. Mol. Cell. Biol. *4*, 1985-1998.

©2009 Life Technologies Corporation. All rights reserved.

Notes

Notes

invitrogen

Corporate Headquarters 5791 Van Allen Way Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech_support@invitrogen.com

For country-specific contact information, visit our web site at www.invitrogen.com