

pcDNA[™]3.1/Zeo (+) pcDNA[™]3.1/Zeo (–)

For high-level stable and transient expression in mammalian hosts

Catalog nos. V860-20 and V865-20

Version J 12 November 2010 28-0110

User Manual

Table of Contents

Kit Contents and Storage	V
Accessory Products	vi
Introduction	1
Overview	1
Methods	2
Cloning into pcDNA [™] 3.1/Zeo (+/-)	2
Transfection	6
Creation of Stable Cell Lines	7
Appendix	9
Appendix Recipes	
	9
Recipes Map of pcDNA [™] 3.1/Zeo (+) and pcDNA [™] 3.1/Zeo (−) Vectors Features of pcDNA [™] 3.1/Zeo (+) and pcDNA [™] 3.1/Zeo (−) Vectors	9
Recipes Map of pcDNA TM 3.1/Zeo (+) and pcDNA TM 3.1/Zeo (–) Vectors Features of pcDNA TM 3.1/Zeo (+) and pcDNA TM 3.1/Zeo (–) Vectors Map of pcDNA TM 3.1/Zeo/CAT	
Recipes Map of pcDNA [™] 3.1/Zeo (+) and pcDNA [™] 3.1/Zeo (−) Vectors Features of pcDNA [™] 3.1/Zeo (+) and pcDNA [™] 3.1/Zeo (−) Vectors	
Recipes Map of pcDNA TM 3.1/Zeo (+) and pcDNA TM 3.1/Zeo (–) Vectors Features of pcDNA TM 3.1/Zeo (+) and pcDNA TM 3.1/Zeo (–) Vectors Map of pcDNA TM 3.1/Zeo/CAT	9

Kit Contents and Storage

Shipping and	pcDNA [™] 3.1/Zeo(+/−) vectors are shipped on wet ice. Upon receipt, store
Storage	vectors at –20°C.

Kit ContentsEach catalog number contains the following vectors. All vectors are supplied in
aliquot detailed below. Store the vectors at -20°C.

Catalog nos.	Vector	Quantity	Composition (supplied as)
V860–20	pcDNA [™] 3.1/Zeo(+)	20 µg	40 µl of 0.5 µg/µl pcDNA [™] 3.1/Zeo(+) vector in 10 mM Tris–HCl, 1 mM EDTA, pH 8.0
	pcDNA [™] 3.1/Zeo/CAT control	20 µg	40 μl of 0.5 μg/μl pcDNA [™] 3.1/Zeo/CAT control vector in 10 mM Tris–HCl, 1 mM EDTA, pH 8.0
V865–20	pcDNA [™] 3.1/Zeo(–)	20 µg	40 μl of 0.5 μg/μl pcDNA [™] 3.1/Zeo(–) vector in 10 mM Tris–HCl, 1 mM EDTA, pH 8.0
	pcDNA [™] 3.1/Zeo/CAT control	20 µg	40 μl of 0.5 μg/μl pcDNA [™] 3.1/Zeo/CAT control vector in 10 mM Tris–HCl, 1 mM EDTA, pH 8.0

Accessory Products

Introduction

The following additional products may be used with the pcDNA[™]3.1/Zeo(+/−) vectors. For more information, visit our web site at <u>www.invitrogen.com</u>, or contact **Technical Support** (page 13).

Item	Quantity	Catalog no.
One Shot [®] TOP10F [′] (chemically competent <i>E. coli</i>)	20 x 50 µl	C3030–03
One Shot [®] TOP10 (chemically competent <i>E. coli</i>)	10 reactions	C4040–10
One Shot [®] TOP10 Electrocompetent <i>E. Coli</i>	10 reactions	C4040-50
	20 reactions	C4040-52
MAX Efficiency [®] DH10B [™] (chemically competent cells)	1 ml	18297–010
T7 Promoter Primer	2 µg	N560-02
BGH Reverse Primer	2 µg	N575-02
S.N.A.P. Miniprep Kit	100 reactions	K1900–01
PureLink [™] HiPure Plasmid Miniprep Kit	100 preps	K2100-03
PureLink [™] HiPure Plasmid Midiprep Kit	25 preps	K2100–04
Zeocin [™] Selection Reagent	1 g	R250-01
	5 g	R250–05
Lipofectamine [™] 2000 Transfection	15 ml	11668–500
Reagent	1.5 ml	11668–019

Introduction

Overview	
Introduction	pcDNA [™] 3.1/Zeo(+) and pcDNA [™] 3.1/Zeo(–) are 5.0 kb vectors derived from pcDNA [™] 3.1 and are designed for high-level stable and transient expression in mammalian hosts. pcDNA [™] 3.1/Zeo (+/–) is available with the multiple cloning sites in the forward (+) and reverse (–) orientations to facilitate cloning. High-level stable and non-replicative transient expression can be carried out in most mammalian cells. A control plasmid, pcDNA [™] 3.1/Zeo/CAT, is included for use as a positive control for transfection and expression in your cell line of choice.
Features of pcDNA [™] 3.1/ Zeo (+/–)	 pcDNA[™]3.1/Zeo (+) and pcDNA[™]3.1/Zeo (-) contain the following features: The human cytomegalovirus immediate-early (CMV) promoter provides high-level expression in a wide range of mammalian cells. Multiple cloning sites in the forward (+) and reverse (-) orientations to facilitate cloning of your gene of interest. The Zeocin[™] resistance gene allows selection in both <i>E. coli</i> and mammalian cells in the presence of the antibiotic Zeocin[™]. SV40 early promoter allows episomal replication in cell lines that are latently infected with SV40 or that express the SV40 large T antigen (e.g. COS-7).
CMV Promoter	pcDNA [™] 3.1/Zeo (+) and pcDNA [™] 3.1/Zeo (–) vectors contain the human CMV immediate early promoter to allow high-level, constitutive expression of the gene of interest in mammalian cells (Andersson <i>et al.</i> , 1989; Boshart <i>et al.</i> , 1985; Nelson <i>et al.</i> , 1987). Although highly active in most mammalian cell lines, activity of the viral promoter can be down-regulated in some cell lines due to methylation (Curradi <i>et al.</i> , 2002), histone deacetylation (Rietveld <i>et al.</i> , 2002), or both.
Experimental Outline	 Use the following outline to clone and express your gene of interest in pcDNA[™]3.1/Zeo(+/-). Consult the multiple cloning sites (pages 3-4) to design a strategy to clone your gene into pcDNA[™]3.1/Zeo (+) or pcDNA[™]3.1/Zeo (-). Ligate your insert into the appropriate vector and transform into <i>E. coli</i>. Select transformants on LB plates containing 50-100 µg/ml ampicillin or Low Salt LB plates containing 25 µg/ml Zeocin[™] (see page 9 for recipe). Analyze your transformants for the presence of insert by restriction digestion. Select a transformant with the correct restriction pattern and use sequencing to confirm that your gene is cloned in the proper orientation. Transfect your construct into the mammalian cell line of interest using your own method of choice. Generate a stable cell line, if desired. Test for expression of your recombinant gene by western blot analysis or functional assay.

Methods

Cloning into pcDNA[™]3.1/Zeo (+/–)

Introduction	To recombine your gene of interest into pcDNA [™] 3.1/Zeo (+/–), you will need to ligate your gene of interest into either pcDNA [™] 3.1/Zeo (+) or pcDNA [™] 3.1/Zeo (–). Diagrams of the multiple cloning sites for each vector are provided on pages 3–4.
General Molecular Biology Techniques	For help with DNA ligations, <i>E. coli</i> transformations, restriction enzyme analysis, purification of single-stranded DNA, DNA sequencing, and DNA biochemistry, refer to <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989) or <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).
<i>E. coli</i> Strain	Many <i>E. coli</i> strains are suitable for the growth of this vector. For the most efficient selection we highly recommended choosing an <i>E. coli</i> strain that does not contain the full Tn5 transposon. Note: Any <i>E. coli</i> strain that contains the complete Tn5 transposable element
	(i.e DH58F1Q, SURE, SURE2) encodes the ble (bleomycin) resistance gene. These strains will be resistant to Zeocin TM .
	We recommend that you propagate pcDNA [™] 3.1/Zeo in <i>E. coli</i> strains that are recombination deficient (recA) and endonuclease A-deficient (endA) such as
	TOP10F´ and DH10B (page vi).
Transformation Method	You may use any method of your choice for transformation. Chemical transformation is the most convenient for most researchers. Electroporation is the most efficient and the method of choice for large plasmids.
Maintenance of pcDNA [™] 3.1/Zeo	To propagate and maintain pcDNA ^{M} 3.1/Zeo (+) or pcDNA ^{M} 3.1/Zeo (–), we recommend that you use 10 ng of the vector to transform a <i>recA</i> , <i>endA E</i> . <i>coli</i> strain such as TOP10, TOP10F' DH5 α^{M} , or equivalent using your method of choice. Select transformants on LB plates containing 50–100 µg/ml ampicillin or Low Salt LB plates containing 25 µg/ml Zeocin ^{M} (see page 9 for recipe).
	For long-term storage of pcDNA ^{m} 3.1/Zeo (+/–), be sure to prepare a glycerol stock of your plasmid-containing <i>E. coli</i> strain (page 5).
Points to Consider Before Recombining into pcDNA [™] 3.1/ Zeo (+/–)	pcDNA [™] 3.1/Zeo (+) and pcDNA [™] 3.1/Zeo (–) are nonfusion vectors. Your insert should contain a Kozak consensus sequence with an ATG initiation codon for proper initiation of translation (Kozak, 1987; Kozak, 1990; Kozak, 1991). An example of a Kozak consensus sequence is provided below. Other sequences are possible, but the G or A at position –3 and the G at position +4 (shown in bold) illustrates the most commonly occurring sequence with strong consensus. Replacing one of the two bases at these positions provides moderate consensus, while having neither results in weak consensus. The ATG initiation codon is shown underlined.
	(G/A)NN <u>ATG</u> G
	Your insert should also contain a stop codon for proper termination of your gene. Note that the <i>Xba</i> I site contains an internal stop codon (TC <u>TAG</u> A).

Cloning into pcDNA[™]3.1/Zeo (+/–), Continued

Multiple Cloning Below is the multiple cloning site for pcDNA[™]3.1/Zeo (+). Restriction sites are Site of labeled to indicate the cleavage site. The multiple cloning site has been pcDNA[™]3.1/Zeo (+) confirmed by sequencing and functional testing. enhancer region (3' end) CATTGACGTC AATGGGAGTT TGTTTTGGCA CCAAAATCAA CGGGACTTTC CAAAATGTCG 689 CAAT TATA 749 TAACAACTCC GCCCCATTGA CGCAAATGGG CGGTAGGCGT GTACGGTGGG AGGTCTATAT 3' end of hCMV putative transcriptional start AAGCAGAGCT CTCTGGCTAA CTAGAGAACC CACTGCTTAC TGGCTTATCG AAATTAATAC 809 T7 promoter priming site Pme | Afl || Hind ||| Asp718 | Kpn | Nhe I GACTCACTAT AGGGAGACCC AAGCTGGCTA GCGTTTAAAC TTAAGCTTGG TACCGAGCTC 869 BamH I BstX I EcoR I Pst I EcoR V BstX I Not I Xho I 929 GGATCCACTA GTCCAGTGTG GTGGAATTCT GCAGATATCC AGCACAGTGG CGGCCGCTCG
 Xbal
 Apal
 Pmel
 BGH reverse priming site

 I
 I
 I
 I
 I

 AGTCTAGAGG
 GCCCGTTTAA
 ACCCGCTGAT
 CAGCCTCGAC
 TGTGCCTTCT
 BGH reverse priming site 989 1049 CATCTGTTGT TTGCCCCTCC CCCGTGCCTT CCTTGACCCT GGAAGGTGCC ACTCCCACTG BGH poly (A) site 1109 TCCTTTCCTA ATAAAATGAG GAAATTGCAT

Continued on next page

Cloning into pcDNA[™]3.1/Zeo (+/–), Continued

Multiple Cloning Below is the multiple cloning site for pcDNA[™]3.1/Zeo (–). Restriction sites are Site of labeled to indicate the cleavage site. The multiple cloning site has been pcDNA[™]3.1/Zeo (–) confirmed by sequencing and functional testing. enhancer region (3' end) CATTGACGTC AATGGGAGTT TGTTTTGGCA CCAAAATCAA CGGGACTTTC CAAAATGTCG 689 CAAT TATA 749 TAACAACTCC GCCCCATTGA CGCAAATGGG CGGTAGGCGT GTACGGTGGG AGGTCTATAT 3' end of hCMV putative transcriptional start AAGCAGAGCT CTCTGGCTAA CTAGAGAACC CACTGCTTAC TGGCTTATCG AAATTAATAC 809 T7 promoter priming site Nhe I Pme I Apa | Xba | Xho I Not I GACTCACTAT AGGGAGACCC AAGCTGGCTA GCGTTTAAAC GGGCCCTCTA GACTCGAGCG 869 BstX I EcoR V Pst I EcoR I BstX I BamH I

929 GCCGCCACTG TGCTGGATAT CTGCAGAATT CCACCACACT GGACTAGTGG ATCCGAGCTC
 Asp718 | Kpn | Hind III Aff II Pme I
 989 GGTACCAAGC TTAAGTTTAA ACCGCTGATC AGCCTCGACT GTGCCTTCTA GTTGCCAGCC
 1049 ATCTGTTGTT TGCCCCTCCC CCGTGCCTTC CTTGACCCTG GAAGGTGCCA CTCCCACTGT
 BGH poly (A) site

1109 CCTTTCCTAA TAAAATGAGG AAATTGCATC

Continued on next page

Cloning into pcDNA[™]3.1/Zeo (+/–), Continued

<i>E. coli</i> Transformation	 Transform your ligation mixtures into a competent <i>recA</i>, <i>endA E</i>. <i>coli</i> strain (e.g. TOP10, TOP10F², DH10B[™]). 		
	 Select on LB plates containing 50–100 µg/ml ampicillin or Low Salt LB plates containing 25 µg/ml Zeocin[™] (see page 9 for recipe). 		
	3. Select 10–20 clones and analyze insert.	for the presence and orientation of your	
MERO	BGH Reverse primers (page vi) to c orientation for expression, and cont	your construct with the T7 Promoter and onfirm that your gene is in the correct rains an ATG initiation codon and a stop g sites on pages 3–4 for the sequences and	
	Primer	Sequence	
	BGH Reverse	5'-TAGAAGGCACAGTCGAGG-3'	
	T7 Promoter	5'-TAATACGACTCACTATAGGG-3'	
		ffers a custom primer synthesis service. Visit ils, or contact Technical Support (page 13).	
Preparing a Glycerol Stock		t clone, purify the colony and make a glycerol ould keep a DNA stock of your plasmid	
	 Streak the original colony out on an LB plate containing 50–100 µg/ml ampicillin or Low Salt LB plates containing 25 µg/ml Zeocin[™] (see page 9 for recipe) Incubate the plate at 37°C overnight. 		
	 Isolate a single colony and inoculate into 1-2 ml of LB containing 50–100 µg/ml ampicillin (page 9) or Low Salt LB plates containing 25 µg/ml Zeocin[™] (page 9) 		
	3. Grow the culture to mid-log phase ($OD_{600} = 0.5-0.7$).		
	4. Mix 0.85 ml of culture with 0.15 cryovial.	ml of sterile glycerol and transfer to a	
	5. Store at –80°C.		

5. Store at -80° C.

Transfection

Introduction	Once you have verified that your gene is cloned in the correct orientation and contains an initiation ATG and a stop codon, you are ready to transfect your cell line of choice. We recommend that you include the positive control vector and a mock transfection (negative control) to evaluate your results.
Plasmid Preparation	Plasmid DNA for transfection into eukaryotic cells must be very clean and free from phenol and sodium chloride. Contaminants will kill the cells and salt will interfere with lipids decreasing transfection efficiency. We recommend isolating DNA using the PureLink [™] HiPure Miniprep Kit or the PureLink [™] HiPure Midiprep Kit (page vi) or CsCl gradient centrifugation.
Methods of Transfection	For established cell lines (e.g. HeLa), consult original references or the supplier of your cell line for the optimal method of transfection. It is recommended that you follow the protocol for your cell line <i>exactly</i> . Pay particular attention to medium requirements, when to pass the cells, and at what dilution to split the cells. Further information is provided in <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).
	Methods for transfection include calcium phosphate (Chen & Okayama, 1987; Wigler <i>et al.</i> , 1977), lipid-mediated (Felgner <i>et al.</i> , 1989; Felgner & Ringold, 1989) and electroporation (Chu <i>et al.</i> , 1987; Shigekawa & Dower, 1988). Invitrogen offers the Lipofectamine [™] 2000 Transfection Reagent (page vi) as well as a selection of other transfection reagents for your convenience. For more information on available reagents, visit our web site at <u>www.invitrogen.com</u> or contact Technical Support (page 13).
Positive Control	pcDNA [™] 3.1/Zeo/CAT is provided as a positive control vector for mammalian transfection and expression (see page 12). It may be used to optimize transfection conditions for your cell line. The gene encoding chloramphenicol acetyl transferase (CAT) is expressed in mammalian cells under the CMV promoter. A successful transfection will result in positive CAT expression and can be easily assayed (below).
Assay for CAT Protein	You may assay for CAT expression by ELISA assay, western blot analysis, fluorometric assay, or radioactive assay (Ausubel <i>et al.</i> , 1994; Neumann <i>et al.</i> , 1987).

Creation of Stable Cell Lines

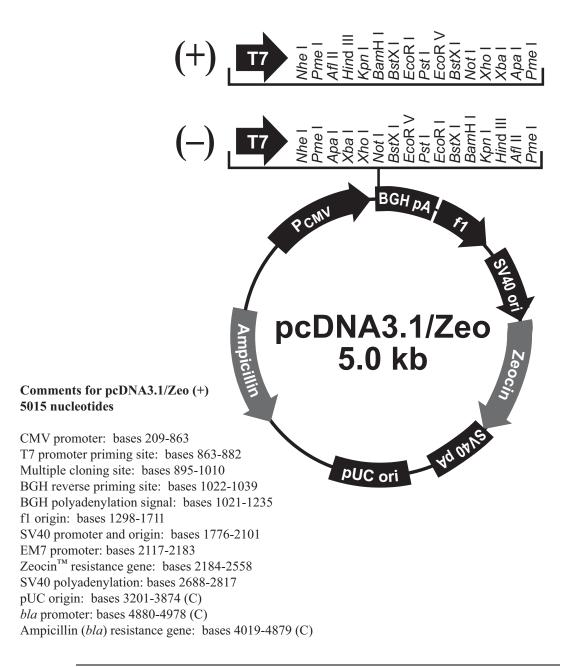
Introduction	The pcDNA [™] 3.1/Zeo (+) and pcDNA [™] 3.1/Zeo (–) vectors contain the Zeocin [™] resistance gene for selection of stable cell lines using Zeocin [™] . We recommend that you test the sensitivity of your mammalian host cell to Zeocin [™] , as natural resistance varies among cell lines. General information and guidelines are provided in this section for your convenience.		
Zeocin [™]	antibiotics isolated from <i>Stri</i> spectrum antibiotics that act show strong toxicity against mammalian cells. Zeocin [™] is spectrum antibiotic Zeocin [™]	of structurally related bleomycin/phleomycin-type eptomyces. Antibiotics in this family are broad t as strong antibacterial and anti-tumor drugs. They bacteria, fungi (including yeast), plants, and s not as toxic as bleomycin on fungi. As a broad- ' is particularly useful, allowing selection in a number ors with a Zeocin [™] resistance gene.	
Zeocin [™] Mechanism of Action	The exact mechanism of action of Zeocin [™] is not known; however, it is thought to be the same as bleomycin and phleomycin due to its similarity to these drugs and its inhibition by the Sh ble resistance protein (see next section). The copper/glycopeptide complex is selective and involves chelation of copper (Cu ²⁺) by the amino group of the 8-carbox-amide, single nitrogen atoms of both the pyrimidine chromophore and the imidazole moiety, and the carbamoyl group of mannose. The copper-chelated form is inactive. When the antibiotic enters the cell, the copper cation is reduced from Cu ²⁺ to Cu ¹⁺ and removed by sulfhydryl compounds in the cell. Upon removal of the copper, Zeocin [™] is activated to bind DNA and cleave it causing cell death (Berdy, 1980). High salt concentrations and acidity or basicity inactivate Zeocin [™] ; therefore, it is necessary to reduce the salt in bacterial medium to 90 mM (5 g/liter) or less and adjust the pH to 7.5 to make sure the drug remains active.		
Zeocin [™] Applications	(Perez <i>et al.,</i> 1989); yeast (Ba 1990). Suggested concentrat	Zeocin TM is used for selection in mammalian cells (Mulsant <i>et al.</i> , 1988); plants (Perez <i>et al.</i> , 1989); yeast (Baron <i>et al.</i> , 1992); and prokaryotes (Drocourt <i>et al.</i> , 1990). Suggested concentrations of Zeocin TM for selection in mammalian tissue culture cells and <i>E. coli</i> are listed below:	
	Organism	Zeocin [™] Concentration and Selective Medium	
	E. coli	25-50 μg/ml in low salt LB medium*	
	Mammalian cells	50-1000 μg/ml (depends on cell line)	

*Efficient selection requires that the concentration of NaCl be no more than 5 g/liter (< 90 mM).

Continued on next page

Creation of Stable Cell Lines, Continued

Determining Antibiotic Sensitivity	To obtain a stable integrant, you must first determine if the cell line in question can grow as an isolated colony. You may already know this for your cell line. If you do not, seed ~100 cells in a 60 mm plate and feed every 4 days for 10–12 days. Count the number of colonies. Growing in soft agar can help cells to grow when they are diluted; however, some cell lines (e.g. NIH3T3) require plating at a certain density in order to grow properly (see Ausubel, <i>et al.</i> , 1990).			
	Next, determine the minimal concentration of $\text{Zeocin}^{\text{TM}}$ required to prevent growth of the parental cell line using the protocol below:			
	1.	Plate or split a confluent plate so there are approximately 2.5×105 cells per 60–100 mm dish. Prepare 7 plates and add varying concentrations of Zeocin TM (0, 50, 125, 250, 500, 750, and 1000 µg/ml) to each plate.		
2. Replenish the selective media every 3–4 days, and observe the percessurviving cells.				
	3.	Count the number of viable cells at regular intervals to determine the appropriate concentration of Zeocin [™] that prevents growth.		
Selection of Stable Integrants		ce you have determined the appropriate Zeocin [™] concentration to use, you generate a stable cell line with your construct.		
	1.	Transfect cells with your construct using the desired protocol and plate. Remember to include a plate of untransformed cells as a negative control.		
	2.	24 hours after transfection, wash the cells and add fresh medium to the cells.		
	3.	48 hours after transfection, split the cells into fresh medium containing Zeocin [™] at the pre-determined concentration required for your cell line. Split the cells such that the cells are no more than 25% confluent.		
	4.	Feed the cells with selective medium every 3–4 days until foci can be identified.		
	5.	Pick and expand the foci to test for expression of your recombinant protein.		


Appendix

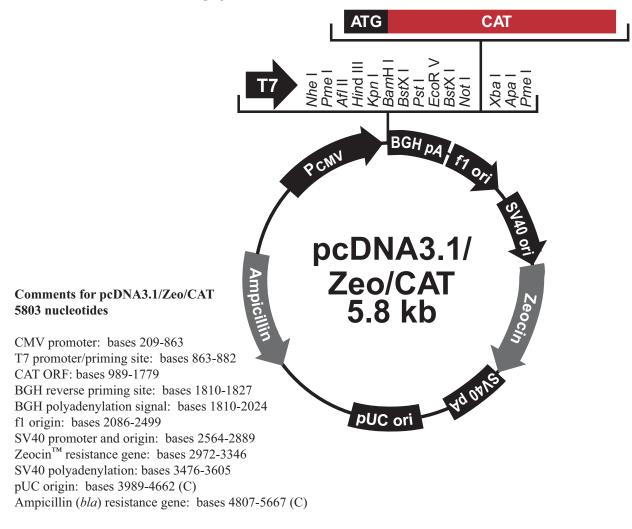
Recipes

LB (Luria-Bertani) Medium	 1.0% Tryptone 0.5% Yeast Extract 1.0% NaCl pH 7.0 For 1 liter, dissolve 10 g tryptone, 5 g yeast extract, and 10 g NaCl in 950 ml deionized water. Adjust the pH of the solution to 7.0 with NaOH and bring the volume up to 1 liter. Autoclave on liquid cycle for 20 minutes. Allow solution to cool to ~55°C and add antibiotic, if desired. Store at +4°C.
LB Plates Containing Ampicillin	 Follow the instructions below to prepare LB agar plates containing ampicillin. Prepare LB medium as above, but add 15 g/L agar before autoclaving. Autoclave on liquid cycle for 20 minutes. After autoclaving, cool to ~55°C, add ampicillin to a final concentration of 100 µg/ml and pour into 10 cm plates. Let harden, then invert and store at +4°C, in the dark.
Low Salt LB Medium Containing Zeocin [™]	 For Zeocin[™] to be active, the salt concentration of the medium must remain low (< 90 mM) and the pH must be 7.5. You must prepare LB broth and plates using the following recipe. Note the lower salt content of this medium. Failure to lower the salt content of your LB medium will result in nonselection due to inactivation of the drug. Low Salt LB Medium: 10 g Tryptone 5 g NaCl 5 g Yeast Extract 1. Combine the dry reagents above and add deionized, distilled water to 950 ml. Adjust pH to 7.5 with 1 N NaOH. Bring the volume up to 1 liter. For plates, add 15 g/L agar before autoclaving. 2. Autoclave on liquid cycle at 15 lbs/sq. in. and 121°C for 20 minutes. 3. Allow the medium to cool to at least 55°C before adding the Zeocin[™] to 25 µg/ml final concentration. 4. Store plates at 4°C in the dark. Plates containing Zeocin[™] are stable for 1-2 weeks.

Map of pcDNA[™]3.1/Zeo (+) and pcDNA[™]3.1/Zeo (–) Vectors

Map of pcDNA[™]3.1/Zeo The figure below summarizes the features of the pcDNA[™]3.1/Zeo (+) and pcDNA[™]3.1/Zeo (-) vectors. The complete nucleotide sequences for pcDNA[™]3.1/Zeo (+) and pcDNA[™]3.1/Zeo (-) are available for downloading from our web site at <u>www.invitrogen.com</u> or from **Technical Support** (page 13).

Features of pcDNA[™]3.1/Zeo (+) and pcDNA[™]3.1/Zeo (–) Vectors


Features of	pcDNA [™] 3.1/Zeo (+) (5015 bp) and pcDNA [™] 3.1/Zeo (–) (5014 bp) contain the
pcDNA [™] 3.1/	following elements. All features have been functionally tested.
Zeo (+/–)	

Feature	Benefit
Human cytomegalovirus (CMV) immediate-early promoter/enhancer	Permits efficient, high-level expression of your recombinant protein (Andersson <i>et al.</i> , 1989; Boshart <i>et al.</i> , 1985; Nelson <i>et al.</i> , 1987)
T7 promoter/priming site	Allows for <i>in vitro</i> transcription in the sense orientation and sequencing through the insert
Multiple cloning site in forward or reverse orientation	Allows insertion of your gene and facilitates cloning
BGH reverse priming site	Allows sequencing through the insert in the reverse orientation
Bovine growth hormone (BGH) polyadenylation signal	Permits efficient transcription termination and polyadenylation of mRNA (Goodwin & Rottman, 1992)
f1 origin	Allows rescue of single-stranded DNA
SV40 early promoter and origin	Allows efficient, high-level expression of the Zeocin [™] resistance gene and episomal replication in cells expressing SV40 large T antigen
EM7 promoter	Permits expression of the Zeocin ^{TM} resistance gene in <i>E. coli</i>
Zeocin [™] resistance gene	Allows selection of transformants in <i>E. coli</i> and stable transfectants in mammalian cells (Drocourt, <i>et al.</i> , 1990; Mulsant, <i>et al.</i> , 1988)
SV40 polyadenylation signal	Permits efficient transcription termination and polyadenylation of mRNA
pUC origin	Permits high-copy number replication and growth in <i>E. coli</i>
<i>bla</i> promoter	Permits expression of the ampicillin resistance gene in <i>E. coli</i>
Ampicillin resistance gene (β-lactamase)	Allows selection in <i>E. coli</i>

Map of pcDNA[™]3.1/Zeo/CAT

Map of pcDNA[™]3.1/Zeo/ CAT pcDNA^M3.1/Zeo/CAT is a 5803 bp control vector containing the gene for CAT. It was constructed by digesting pcDNA^M3.1/Zeo (+) with *Xho* I and *Xba* I and was treated with Klenow. An 800 bp *Hind* III fragment containing the CAT gene was treated with Klenow and then ligated into pcDNA^M3.1/Zeo (+).

The figure below summarizes the features of the pcDNA[™]3.1/Zeo/CAT vector. The complete nucleotide sequence for pcDNA[™]3.1/Zeo/CAT is available by downloading it from our web site at <u>www.invitrogen.com</u> or from **Technical Support** (page 13).

Technical Support

Web	Resources

Visit the Invitrogen web site at <u>www.invitrogen.com</u> for:

- Technical resources, including manuals, vector maps and sequences, application notes, MSDSs, FAQs, formulations, citations, handbooks, etc.
- Complete technical support contact information
- Access to the Invitrogen Online Catalog
- Additional product information and special offers

Contact Us

For more information or technical assistance, call, write, fax, or email. Additional international offices are listed on our web site (<u>www.invitrogen.com</u>).

Corporate Headquarte Invitrogen Corporation 5791 Van Allen Way Carlsbad, CA 92008 US Tel: 1 760 603 7200 Tel (Toll Free): 1 800 95 Fax: 1 760 602 6500 E-mail: <u>tech support@</u>	n 5A 5 6288	Japanese Headquarters: Invitrogen Japan LOOP-X Bldg. 6F 3-9-15, Kaigan Minato-ku, Tokyo 108-0022 Tel: 81 3 5730 6509 Fax: 81 3 5730 6519 E-mail: jpinfo@invitrogen.com	European Headquarters: Invitrogen Ltd Inchinnan Business Park 3 Fountain Drive Paisley PA4 9RF, UK Tel: +44 (0) 141 814 6100 Tech Fax: +44 (0) 141 814 6117 E-mail: <u>eurotech@invitrogen.com</u>
MSDS		rial Safety Data Sheets) are availa gen.com/msds.	able on our web site at
Certificate of Analysis	Product qualification is described in the Certificate of Analysis (CofA), available on our website by product lot number at <u>www.invitrogen.com/cofa</u> .		
Limited Warranty	Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, contact our Technical Support Representatives. Invitrogen warrants that all of its products will perform according to specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. <u>This warranty limits Invitrogen Corporation's liability</u> <u>only to the cost of the product</u> . No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order.		
	the occasional ty warranty of any	ypographical or other error is inevita kind regarding the contents of any or in any of our publications, please	y of its publications, but realizes that able. Therefore, Invitrogen makes no publications or documentation. If you report it to our Technical Support
	consequential l exclusive. No o	mes no responsibility or liability f oss or damage whatsoever. The abo ther warranty is made, whether exp rchantability or fitness for a partice	pressed or implied, including any

Purchaser Notification

Introduction	Use of the pcDNA [™] 3.1/Zeo (+/−) vectors is covered under a number of different licenses including those detailed below.
Limited Use Label License No. 358: Re- search Use Only	The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, qual- ity control and commercial services such as reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact outlicensing@lifetech.com or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.

- Andersson, S., Davis, D. L., Dahlbäck, H., Jörnvall, H., and Russell, D. W. (1989) Cloning, Structure, and Expression of the Mitochondrial Cytochrome P-450 Sterol 26-Hydroxylase, a Bile Acid Biosynthetic Enzyme. J. Biol. Chem. 264, 8222-8229
- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994) *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley-Interscience, New York
- Baron, M., Reynes, J. P., Stassi, D., and Tiraby, G. (1992) A Selectable Bifunctional β-Galactosidase: Phleomycin-resistance Fusion Protein as a Potential Marker for Eukaryotic Cells. Gene 114, 239-243
- Berdy, J. (1980) in *Amino Acid and Peptide Antibiotics* (Berdy, J., ed) Vol. IV, Part I, pp. 459-497, CRC Press, Boca Raton, FL
- Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B., and Schaffner, W. (1985) A Very Strong Enhancer is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus. Cell 41, 521-530
- Chen, C., and Okayama, H. (1987) High-Efficiency Transformation of Mammalian Cells by Plasmid DNA. Mol. Cell. Biol. 7, 2745-2752
- Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the Efficient Transfection of Mammalian Cells with DNA. Nucleic Acids Res. 15, 1311-1326
- Curradi, M., Izzo, A., Badaracco, G., and Landsberger, N. (2002) Molecular Mechanisms of Gene Silencing Mediated by DNA Methylation. Mol. Cell. Biol. 22, 3157-3173
- Drocourt, D., Calmels, T. P. G., Reynes, J. P., Baron, M., and Tiraby, G. (1990) Cassettes of the *Streptoalloteichus hindustanus ble* Gene for Transformation of Lower and Higher Eukaryotes to Phleomycin Resistance. Nucleic Acids Res. *18*, 4009
- Felgner, P. L., Holm, M., and Chan, H. (1989) Cationic Liposome Mediated Transfection. Proc. West. Pharmacol. Soc. 32, 115-121
- Felgner, P. L. a., and Ringold, G. M. (1989) Cationic Liposome-Mediated Transfection. Nature 337, 387-388
- Goodwin, E. C., and Rottman, F. M. (1992) The 3´-Flanking Sequence of the Bovine Growth Hormone Gene Contains Novel Elements Required for Efficient and Accurate Polyadenylation. J. Biol. Chem. 267, 16330-16334
- Kozak, M. (1987) An Analysis of 5⁻Noncoding Sequences from 699 Vertebrate Messenger RNAs. Nucleic Acids Res. 15, 8125-8148
- Kozak, M. (1990) Downstream Secondary Structure Facilitates Recognition of Initiator Codons by Eukaryotic Ribosomes. Proc. Natl. Acad. Sci. USA *87*, 8301-8305
- Kozak, M. (1991) An Analysis of Vertebrate mRNA Sequences: Intimations of Translational Control. J. Cell Biology 115, 887-903
- Mulsant, P., Tiraby, G., Kallerhoff, J., and Perret, J. (1988) Phleomycin Resistance as a Dominant Selectable Marker in CHO Cells. Somat. Cell Mol. Genet. 14, 243-252
- Nelson, J. A., Reynolds-Kohler, C., and Smith, B. A. (1987) Negative and Positive Regulation by a Short Segment in the 5'-Flanking Region of the Human Cytomegalovirus Major Immediate-Early Gene. Molec. Cell. Biol. 7, 4125-4129
- Neumann, J. R., Morency, C. A., and Russian, K. O. (1987) A Novel Rapid Assay for Chloramphenicol Acetyltransferase Gene Expression. BioTechniques 5, 444-447
- Perez, P., Tiraby, G., Kallerhoff, J., and Perret, J. (1989) Phleomycin Resistance as a Dominant Selectable Marker for Plant Cell Transformation. Plant Mol. Biol. *13*, 365-373

Continued on next page

- Rietveld, L. E., Caldenhoven, E., and Stunnenberg, H. G. (2002) In vivo Repression of an Erythroid-Specific Gene by Distinct Corepressor Complexes. EMBO J. 21, 1389-1397
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, Second Ed., Cold Spring Harbor Laboratory Press, Plainview, New York
- Shigekawa, K., and Dower, W. J. (1988) Electroporation of Eukaryotes and Prokaryotes: A General Approach to the Introduction of Macromolecules into Cells. BioTechniques 6, 742-751
- Wigler, M., Silverstein, S., Lee, L.-S., Pellicer, A., Cheng, Y.-C., and Axel, R. (1977) Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells. Cell 11, 223-232

©1996–2008, 2010 Invitrogen Corporation. All rights reserved. For research use only. Not intended for any animal or human therapeutic or diagnostic use.

invitrogen®

Corporate Headquarters Invitrogen Corporation 5791 Van Allen Way Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech_support@invitrogen.com

For country-specific contact information, visit our web site at www.invitrogen.com